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Numerical simulation of turbulent Rayleigh–Benard convection☆
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Abstract

This paper presents the numerical results of the turbulent Rayleigh–Benard convection at three Rayleigh numbers:
Ra=3.80×107, 3.08×108 and 1.58×109. The fourth order upwind scheme and coarse staggered grid system are used for the
numerical calculation. The results are well agreed with experimental data. The successful computation for the problem implies that
there might have simpler fundamentals for turbulent convection modeling, which will be explored in the subsequent theoretical and
numerical studies.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Rayleigh–Benard convection is the thermal induced flow in a thin fluid layer heated from below. It has been the
benchmark problem in hydrodynamic instability and has been long-time investigated [1]. At the critical Rayleigh
number of about 1708, the flow transition occurs from the sub-critical to super-critical regimes. The turbulent
convection regimes appear at even larger Rayleigh numbers, at which the effect of numerical viscosity becomes weak
for numerical calculation. This effect is closely involved with numerical schemes used in discretizing the governing
equations. Because turbulence is still an unsolved problem in classical physics [2], the turbulent Rayleigh–Benard
convection is one of the problems in this category and is an important topic in thermal science.

As the one-point closure turbulence models [3] adopted many artificial coefficients but lacking the verification of
their universality, and so does the large eddy simulation models [4]. In this study, we therefore prefer to employ direct
numerical simulation (DNS) in terms of coarse grid, because the strictly saying DNS requires the grid number should
be at the level of about Ra2.25 [5], leading to the computational demand far beyond the ability of a personal computer.

The wind (i.e. large scale circulation appeared autonomously) in the Rayleigh–Benard convection has been
identified recently [6]. It was found that, for the case of Ra=107 and Pr=1, the wind boundary layer scales linearly
close to the wall and has a logarithmic region further away, indicating that the boundary layer is turbulent. Our previous
works [7,8] show that the numerical viscous effect becomes evident when equivalent Reynolds number is large. Hence,
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in this study, we use a fourth order upwind scheme in the discretization of the convective terms of the governing
equations, so that, for the simulation of the turbulent Rayleigh–Benard convection, the numerical viscous influence can
be maintained in a comparatively low level.

The main aim of this study is to prove that the direct numerical simulation (DNS) in terms of coarse grid is effective
in the study of turbulent natural convections for further theoretical and numerical study of the turbulent natural
convection.

2. Governing equations and numerical method

2.1. Governing equations

The turbulent Rayleigh–Benard convection is schematically illustrated in Fig. 1. The origin of the Cartesian
coordinate system is allocated at the center of the rectangular cavity whose width–length–height is 6:12:1, where x is
the horizontal coordinate, with y and z denoting the vertical and spanwise direction. The cavity is filled with a fluid with
kinematic viscosity í and thermal diffusivity κ, with all vertical wall insulated. The bottom and top walls are assumed as
isothermal, and the heat flux flows through the thin fluid layer from below. Following the approach of Wakitani [9], we
select v0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbTHDT

p
as the velocity scale, the height H as the length scale and the time scale should be t0=H /v0,

with ρv0
2 being the measure of pressure. When we further define Θ=[T−Tw] /ΔT, the dimensionless governing

equations for the turbulent natural convection problem can be written as follows:

jdu ¼ 0 ð1Þ

ut þ ðudjÞu ¼ −jpþHkþ ðRa=PrÞ−1=2j2u ð2Þ

Ht þ ðudjÞH ¼ ðRaPrÞ−1=2j2H ð3Þ
where λ=(0,1,0) denotes the unit vector in the vertical direction and Pr is the Prandtl number, with the Rayleigh
number Ra=gβT(Tw1−Tw2)H3 / (νκ). It is noted that the variables in the governing equations are point averaged, i.e.
averaged in an arbitrary standard monad in the turbulent field, with effect from the nonstandard monads in the standard
one being totally neglected. Further work will be done to include these nonstandard monad influences on the turbulent
natural convection in our subsequent papers.

The boundary conditions on the two vertical walls can be written as:

u ¼ 0; v ¼ 0; w ¼ 0; AH=Ax ¼ 0; for x ¼ −6; yað−0:5; 0:5Þ; zað−3; 3Þ ð4Þ
and

u ¼ 0; v ¼ 0; w ¼ 0; AH=Ax ¼ 0; for x ¼ 6; yað−0:5; 0:5Þ; zað−3; 3Þ ð5Þ
For the bottom wall, the boundary conditions are:

u ¼ 0; v ¼ 0; w ¼ 0; H ¼ 1; for y ¼ −0:5; xað−6; 6Þ; zað−3; 3Þ ð6Þ
and for the top wall,

u ¼ 0; v ¼ 0; w ¼ 0; H ¼ 0; for y ¼ þ0:5; xað−6; 6Þ; zað−3; 3Þ ð7Þ
Fig. 1. Schematic diagram of the turbulent Benard convection in the case of Tw1NTw2 (the width–length–height ratio is 6:12:1 in this study).
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Fig. 2. Evolution of overall Nusselt numbers on the bottom wall at three Rayleigh numbers.
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where

u ¼ 0; v ¼ 0; w ¼ 0; AH=Az ¼ 0; for z ¼ F3; xað−6; 6Þ; yað−0:5; 0:5Þ ð8Þ

for the boundary conditions on the front and rear vertical walls.

2.2. Numerical method

The solution method is characterized by the use of the projection method (PmIII) developed by Brown et al.
[10]. The staggered grid system is used in the numerical simulation. The convective terms are differenced by a
fourth order upwind scheme instead of the second-order one used in our previous work [8]. The equation for the
pressure potential is solved by the approximate factorization method developed by Baker [11] at first and then
followed with solution accuracy improvement by using the method Bi-CGSTAB of Von der Vorst [12]. The
accuracy of the numerical method is verified by the measured Nusselt number at Ra=3.80×107 in Refs. [1,13].
Our computation gives an overall Nusselt number of 22.95, as shown by the solid curve in Fig. 2. This value is
excellently consisted with the measured data 22.72. Table 1 shows that at other two larger Rayleigh numbers,
agreement between the numerical calculation and the measured results is also well, indicating that the numerical
viscous effect has been certainly suppressed to a lower level. For turbulent flow simulation, higher order
discretization for non-linear terms is useful. The detail of the numerical scheme will be presented in our
subsequent works.
Table 1
Comparison of the overall Nusselt numbers between calculation results and experimental results (extrapolated from Refs. [1,13] with respect to
Nuexp=0.125Ra

0.303Pr0.25)

Ra 3.80×107 3.08×108 1.58×109

Nu
P

av (bottom) 22.95 42.74 72.54
Nu
P

av (top) 22.09 41.64 71.61
Nu
P

av (measured*) 22.72 42.83 70.29
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3. Results and discussion

The fluid in the rectangular cavity with width–legnth–height ratio 6:12:1 is air whose Prandtl number is 0.71. The
numerical simulation was terminated at the t=240 on a personal computer with an internal memory of 1 G bytes. Three
Rayleigh numbers are used for the numerical computation, i.e. 3.80×107, 3.08×108 and 1.58×109. The grid number used in
the present simulations is chosen as: 161×41×51 (∼3.36×105). Clearly, it is much less than the required grid number in the
DNS with respect to the traditional meaning, which should be at the level of (Ra/Pr)9/8(≈5.2×109) for Ra=3.08×108.

3.1. Overall Nusselt number

Table 1 summarizes the computation results, which show that the overall Nusselt numbers on the bottom and top walls are very
close to each other. The measurement results were obtained by the extrapolation of the experimental curve given by Silveston [13]
and also from Ref. [1], which can be expressed in a power-law form as Nuexp=0.125Ra

0.303Pr0.25. The excellent agreement between
the calculated Nusselt numbers and the measured ones shows that the coarse-grid DNS is able to present satisfactory results and the
method with forth order upwind scheme is favorable.

Corresponding to the calculated Nusselt numbers shown in Table 1, Fig. 2 further illustrates the evolution of the overall
Nusselt numbers on the bottom wall. It was found that there exist significant oscillations of the Nusselt number curves.
Evidently, the time-averaged Nusselt number increases with the increase of the Rayleigh number, and so does the corresponding
oscillating magnitude. This means that the chaotic degree of Rayleigh–Benard convection grows as the Rayleigh number is
increased.

3.2. Velocity history

The historical variations of the velocity components at four particular points in the rectangular cavity have been shown in Fig. 3.
It is seen that, even though the time averaged velocity components is very close to zero, at the given Rayleigh number of 3.08×108,
the instantaneous velocity can arrive at a value of about 0.5 v0, where v0 is the velocity scale. This finding is useful for recognizing
the wind intensity in the Rayleigh–Benard convection.
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Fig. 3. Historical variations of velocity components at four different points near the cavity walls at Ra=3.08×108, (a) at points (0, −0.47, 0) and
(0, +0.47, 0); (b) at points (−5.97, 0, 0) and (+5.97, 0, 0).
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Fig. 4. The diagram of power spectra of the historical velocity variations given in Fig. 3(a).
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To show whether there exists a turbulent inertial range for the turbulent convection, we further present the discrete Hilbert
transform [14] to evaluate the diagram of power spectrum of the velocity evolutions curves given in Fig. 3(a). From Fig. 4, there does
have an inertial range at the frequency of about 0.1, but the inertial range is comparative narrow, in which the power spectrum decays
with the frequency with respect to the well-known negative 5/3 law.

3.3. Flow structures

To depict the turbulent Rayleigh–Benard convection patterns, the flood-type contours of vortices in the y-direction in the mid-
plane (y=0) has been given in Fig. 5. Comparing part (a) and part (b) in Fig. 5, it can be seen that, at the instant of t=240, the
turbulent vortical structures at Ra=3.08×108 is finer than that obtained at Ra=3.80×107. This is qualitatively coincident with what
Fig. 5. The vortical fields in the horizontal mid-plane (y=0) at the instant of t=240, at two Rayleigh numbers: (a) Ra=3.80×107, (b) Ra=3.08×108.



Fig. 6. The vortical fields in the vertical mid plane (z=0) at three Rayleigh numbers: (a) Ra=3.80×107, (b) Ra=3.08×108, (c) Ra=1.58×109.
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was found by Azevedo and Sparrow [15], i.e. the larger the Rayleigh number, the smaller the spatial wavelength. On the other hand,
it indicates that the numerical results in our previous study might have been deteriorated by the possible numerical viscosity, since
larger deviations of spatial wavelength were found. This dependence of turbulent structure scale on the Rayleigh number can also be
observed in Fig. 6. It is indicated that, for Rayleigh–Benard convection, the 3-D simulation can obtain more reliable numerical
results from the points of fluid physics.
4. Conclusions

The normalized oscillating velocity magnitude of the wind in the Rayleigh–Benard convection is about 0.5 at the
Rayleigh number of 3.08×108. The overall Nusselt numbers at the Rayleigh numbers of 3.80×107, 3.08×108 and
1.58×109 from the coarse grid direct numerical simulation (DNS) are in excellent agreement with the measured results.
The turbulent vortical structures become finer with the increase of the Rayleigh number. It implies that the fourth order
upwind scheme can efficiently suppress the numerical viscous effect and make it at a lower level. The underlying
reasons that the coarse grid DNS can present favorable numerical results will be studied in our subsequent works.

Nomenclatures
Cp Specific heat under constant pressure
G Gravitational acceleration (m2/s)
H Height of the cavity m
L(=H) Length of the cavity m
W(=2H) Width of the cavity m
Nuav Overall Nusselt number
p Pressure
Pr Prandtl number of fluid
Ra Rayleigh number
t0 Time scale (s)
t Time
Tw1 Absolute temperature of the hot vertical wall (K)
Tw2 Absolute temperature of the cold vertical wall (k)
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u Velocity vector
v0 Velocity scale (m/s)
u Velocity component in x-direction
v Velocity component in y-direction
w Velocity component in z-direction
Greek symbols
βT Coefficient of volumetric expansion
ΔT=Th−Tc Temperature difference between the two vertical walls
ρ Mean density of the fluid (kg/m3)
Θ Normalized temperature
ν Kinematic viscosity (m2/s)
Subscripts
w1 Bottom wall
W2 Top wall
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