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Abstract

Correct description of turbulent natural convection plays an important role in the field of heat transfer and building environment. The natural
convection in turbulent regime in a tall cavity can exhibit a complex dynamic behavior that affects the momentum and heat transport between the
hot and cold vortical clusters. Using higher order finite difference numerical scheme, the results from this numerical study present the vortical
structures in the tall cavity when the height–depth–width ratio is 16:8:1 for higher Rayleigh numbers and the characteristics of the correlation
between the velocity components along the horizontal and vertical center lines in the midplane.
© 2008 Published by Elsevier Ltd.
Keywords: Turbulent natural convection; Air-filled tall cavity; Vortical clusters
1. Introduction

Natural convection is a heat transfer of buoyancy induced
flow. Because turbulence is still a complex physical problem not
well resolved due to the chaotically flow structure having a
broad range of space and time scales [1], the natural convection
in a turbulent regime requires more research efforts. Even
though turbulence modeling [2] has a long history, so far it is
still difficult to address a significant progress well satisfied by
both the theoretical and applied researchers. To get a grip on
turbulence, the lattice Boltzmann equation (LBZ)[3] is useful to
introduce a new approach that facilitates numerical simulation
of complex flows at high Reynolds numbers. However, this
method requires time to carefully validate and the particular
experience to utilize.

Facing to the recent development of turbulence study and
considering the hydrodynamic turbulence should satisfy the
Navier–Stokes equations, we incline to present a coarse grid
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direct numerical simulation (DNS) to study the three-dimen-
sional turbulent natural convection in the tall cavity in a personal
computer by holding the Boussinesq approximation. As reported
in our previous work [4], the traditionally means DNS should
use a very fine grid in general causing the computational de-
mands exceed the capability of a personal computer. Fortunately,
a novel idea based on the nonstandard analysis for the descrip-
tion of turbulence has been recently proposed [5,6]. This implies
that the numerical results with respect to coarse grid DNSmay be
promising [4,7].

A brief literature review of the natural convection in a tall
cavity has been given in our previous numerical work [8],
where, the laminar natural convection regime was highlighted.
In addition, recent experiments have investigated the natural
convection in a tall cavity in turbulent [9] and transitional
regimes [10]. The former has presented the temperature and
velocity profiles as well as the heat fluxes and Reynolds stresses
for the cases of Rayleigh numbers equal to 0.86×106 and
1.43×106, while the latter has shown the transitional patterns
obtained by using the interferometry at the Rayleigh number
ranging from 104 to 5×104.

In this paper, we focus on the numerical investigation of the
turbulent natural convection of air in a tall cavity at the Rayleigh
number ranging from 2×105to 4×106. The objective is to

mailto:behxyang@polyu.edu.hk
http://dx.doi.org/10.1016/j.icheatmasstransfer.2008.01.011


Fig. 1. Schematic diagram of the differentially heated tall cavity.

Nomenclature

A H/W, the height to width ratio
D Depth of the tall cavity, m
g Gravitational acceleration, m2/s
H Height of the cavity, m
Nuav Face-time-averaged Nusselt number
p Pressure
Pr Prandtl number of fluid
Ra Rayleigh number
t Time
Th Absolute temperature of the hot vertical wall K
Tc Absolute temperature of the cold vertical wall K
u Velocity vector
U Velocity component in x-direction
V Velocity component in y-direction
W Velocity component in z-direction
W Width of the cavity m

Greek symbols
βT Coefficient of volumetric expansion
ΔT Th−Tc, Temperature difference between the two

vertical walls
к Thermal diffusivity, m2/s
ρ Mean density of the fluid, kg/m3

Θ Normalized temperature
ν Kinematic viscosity, m2/s

Subscripts
c cold
h hot
l left vertical wall
r right vertical wall
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examine the heat and fluid flow characteristics in the differ-
entially heated air-filled tall cavity when the thermal induced
flow becomes fully turbulent.
2. Governing equations and numerical method

Consider the natural convection problem as schematically
shown in Fig. 1, following the procedure given in Refs. [4,8],
the governing equations in a three-dimensional Cartesian
coordinate system (x,y,z) are as follows:

j � u ¼ 0 ð1Þ
ut þ u �jð Þu ¼ �jpþHl þ Ra Prð Þ�1=2j2u ð2Þ

Ht þ u �jð ÞH ¼ Ra=Prð Þ�1=2j2H ð3Þ
whereλ=(0, 1, 0) denotes the unit vector in the vertical direction,
and Pr is the Prandtl number, with the Rayleigh number Ra=gβT
(Th−Tc)H3/(νκ). The solutions of the governing Eqs. (1–3) are
sought with appropriate conditions that are compatible with the
considered problem. As aforementioned, the boundary conditions
on the two vertical walls can be written as

U ¼ 0;V ¼ 0; W ¼ 0; H ¼ 0:5; for
x ¼ �0:5; ya �8; 8ð Þ; za �4; 4ð Þ

ð4Þ

and

U ¼ 0;V ¼ 0; W ¼ 0; H ¼ �0:5; for
x ¼ 0:5; ya �8; 8ð Þ; za �4; 4ð Þ:

ð5Þ

For the horizontal walls, we have

U ¼ 0;V ¼ 0; W ¼ 0; AH=Ay ¼ 0; for
y ¼ F8; xa �0:5; 0:5ð Þ; za �4; 4ð Þ

ð6Þ

with

U ¼ 0;V ¼ 0; W ¼ 0; AH=Az ¼ 0; for
z ¼ F4; xa �0:5; 0:5ð Þ; ya �8; 8ð Þ

ð7Þ

for the boundary conditions on the front and rear vertical walls.
The initial condition in the tall cavity is given by

U ¼ 0; V ¼ 0; W ¼ 0; H ¼ 0: ð8Þ

The method to solve the 3D unsteady Boussinesq-type
Navier–Stokes equations is the accurate projection method
(PmIII) developed by Brown et al. [11]. A non-uniform stag-
gered grid system is used in the numerical simulation. The
solution method has been used to study the turbulent Rayleigh–
Benard convection [4], where the method for the discretization
of the convective terms in the governing equations was
omitted.



Fig. 2. Time-averaged velocity distributions along the vertical centerline in the
midplane of z=0 for three Rayleigh numbers ((a) Uav; (b) Vav).

Fig. 3. Distributions of root mean square values of velocity components along
the vertical centerline in the midplane of z=0 at three Rayleigh numbers
((a) 10Urms; (b) 10Vrms).

Fig. 4. Distributions of correlation coefficients of velocity components U and V
along the vertical centerline in the midplane of z=0 for three Rayleigh numbers
((a) Ra/106=0.506, 1.60; (b) Ra/106=0.506, 3.06).

608 H. Yang, Z. Zhu / International Communications in Heat and Mass Transfer 35 (2008) 606–612
For the finite difference scheme, the process of discretiza-
tion of the term UUx in Eq. (2) is taken as a special example
here. Assuming that the velocity component (Uijk) is located at
(xi− 1/2, yj, zk), αi(i=1,4) are the finite difference coefficients
that can be derived from the Taylor expansion, and for positive
velocity component UijkN0, the fourth order upwind scheme
can be expressed as

UUxð Þijk¼ Uijk ½� a1 þ a2 þ a3ð ÞUijk þ a1Ui�1;jk

þa2Ui�2; jk þ a3Uiþ1; jk � � a4Uijk Uxxxxð Þijk : ð9Þ

If hi=xi− 1/2−xi− 1/2− 1, according to the Taylor expansion
of the velocities at point (i−1, j, k), (i−2, j, k) and (i+1, j, k),
the following coefficients of the scheme can be found

a2 ¼ s33 þ s23
hiD

; a3 ¼ � s22 � s32
hiD

; a1 ¼ �a2s
2
2 � a3s

2
3 ð10Þ

a4 ¼ a1h
4
i þ a2 hi þ hi�1ð Þ4þa3h

4
iþ1

� �
=24 ð11Þ

where s2= (hi− 1+hi)/hi, s3=hi+1/hi, and Δ= s2s3(s2−1) (s3+1)
(s3+ s2). Similar expressions can be derived for the upwind
differencing of other convective terms in the energy and
momentum of Eqs. (2), (3). It is noted that the fourth order
derivative of u can be discretized by the central difference
approach, which is used for treating the diffusion terms in the
governing equations. Referring to the overall solution procedure
[12], the main difference is in the discretization process of the
convective terms.

3. Results and discussion

The numerical solutions of the turbulent natural convection
in a differentially heated air-filled tall cavity with the height–
depth–width ratio 16:8:1 were obtained by virtue of coarse grid
DNS. Each scenario was investigated in two temporal stages.
Each stage contains 20,000 time-steps with a time-step of
0.004. The terminated computational time is t=160.

The results are discussed in terms of four particular aspects:
velocities, temperatures, and flow fields and heat transfer. The
natural convection in the tall cavity at the Ra ranging from
2×105to 4×106 is really in turbulent regime. The face-time-
average Nusselt numbers on the heating and cooling walls
follow a power law with an index of 0.25, and the correlation



Fig. 6. Distributions of time-averaged velocity component and their rms values
along the horizontal centerline in the midplane of z=0 for three Rayleigh
numbers ((a) Vav; (b) 10Vrms).

Fig. 7. Distributions of the time-averaged temperature and the relevant root
mean square value along the vertical centerline in the midplane of z=0 for three
Rayleigh numbers ((a) Θrms; (b) 10Θrms).

Fig. 5. Distributions of correlation coefficients of velocity components U and V
along the horizontal centerline in the midplane of z=0 for three Rayleigh
numbers ((a) Ra/106=0.506, 3.06; (b) Ra/106=0.506, 16).
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coefficients of horizontal and vertical velocity components in
the two centerlines of the midplane (z=0) have distributions
depending on the Rayleigh number, and fluctuate around 0.4.

3.1. Velocity

Over the time range from t=30 to t=160, the time-averaged
large velocities (Fig. 2(a)–(b)) and their root mean square values
(Fig. 3(a)–(b)) in the vertical centerline of the spanwise
midplane (z=0) were obtained. The time-averaged velocity
curves in the vertical centerline (Fig. 2(a)–(b)) behave in a
spatial wavy oscillation due to stretching and folding of the large
spanwise vortices. As illustrated in Fig. 2(a), due to the constrain
of the top and bottom walls, the averaged velocity Uav ha two
peaks, showing the presence of the wall jet flow turns. The
spatial wave number and the velocity peak values for the Uav

curve in the vertical centerline are closely dependent on the
Rayleigh number. It can be seen from Fig. 2(b), the dependence
of the time-averaged velocity Vav in the vertical centerline on Ra
is more evident than that of the horizontal velocity component
Uav in the vertical centerline.
Fig. 3(a)–(b) shows that in the vertical centerline the root
mean square (rms) curves of the two velocity components are
also characterized by spatial oscillation, and the Ra dependence.
Comparison with recent measurement [9] indicates that the rms



Fig. 8. Distributions of the time-averaged temperature and the relevant root
mean square value along the horizontal centerline in the midplane of z=0 for
three Rayleigh numbers ((a) Θrms; (b) 10Θrms).

Fig. 9. Flow patterns of vorticity field ωz in the midplane of z=0 for
Ra=1.60×1.06 ((a) t=20, (b) t=100, (c) t=160).
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values of velocity U and V in the centerline are consistent with
the measured data quite well.

The velocity components in the vertical and horizontal
directions in the vertical and horizontal centerlines in the
spanwise midplane (z=0) are mutually coupled with a
correlation coefficient oscillating around a value of 0.4, as
shown in Figs. 4 and 5. This particular velocity correlating
phenomenon is coincident with the suggestions from
Tennekes and Lumley [15] that the correlation coefficient
has a value of approximately 0.4 in a fully turbulent flow.
However, the present numerical results show that this note is
merely correct in the means of average. Actually, for the
turbulent natural convection in the tall cavity, the correlation
coefficient of different velocity components depends on the
flow structures.

The spatial fluctuation of the velocity correlation coefficient
in the vertical centerline conceals the flow characteristics of the
turbulent natural convection in a tall cavity. While the negative
velocity correlation near the top and bottom walls implies the
inverse cascade of turbulent kinetic energy from small scale to
large scale eddies. From Fig. 5, it is seen that the distribution of
the velocity correlation coefficient in the horizontal centerline
of the midplane depends on the Rayleigh number.

Because the height to width aspect ratio is rather large (H/
W=16), the two vertical wall jets have an evidently strong
interaction, resulting in multi-cellular vortical structures in the
central region of the tall cavity. These cellular structures lead to
spatial fluctuation of the time-average velocity components, i.e.
the wavy rms curves and the spatial oscillation of the correlation
coefficient of the two velocity components in the vertical
centerline of the midplane (z=0).

On the other hand, as given in Fig. 6(a), the time-averaged
vertical velocity component curve in the horizontal centerline of
the midplane (z=0) fits well with the measured curve from Betts
and Bokhari [9]. The peaks near the vertical walls obtained by
numerical method are slightly higher than those of the measured
data. The time-averaged velocity Vav curves are almost
insensitive to the Rayleigh number. However, as shown in
Fig. 6(b), despite the good fitting of the rms values of V from
the calculation near the walls with the measured data, there is a
large deviation in the central region of the horizontal centerline.
Furthermore, in contrast to Vrms distribution in the near wall
region, the Vrms curve in the central region of the horizontal
centerline is quite sensitive to the Rayleigh number.



Fig. 11. Evolutions of face Nusselt numbers when (a) Ra=1.6x106 and
(b) Ra=4.0×106.

Fig. 10. Flow patterns of vorticity field ωy in the midplane of y=0 for
Ra=1.60×1.06 ((a) t=80, (b) t=160).
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3.2. Temperature

The time-averaged temperature in the vertical centerline of
the midplane (z=0) distributes almost linearly when the top and
bottom walls are kept adiabatic as shown in Fig. 7(a).
Furthermore, the effect of Rayleigh number on this averaged
temperature distribution is negligible. However, as indicated in
Fig. 7(b), significant influence of Ra on the rms of temperature
can be observed. The spatially wavy rms curve of temperature
indicates the appearance of the cellular flow structures in the
cavity.

The temperature's rms in the vertical centerline fluctuate
around 0.05, but the temperature's rms on the top and bottom
walls are relatively low. Similarly, as shown in Fig. 8(a), the
Ra's effect on the time-averaged temperature is much smaller
than that on the relevant temperature rms curve in the
horizontal centerline of the mod plane (z=0). The averaged
temperature profile in the centerline coincides well with the
Table 1
Dependence of face-time-averaged Nusselt number on the Rayleigh number for
H/W=16

Numerical results Experimental
results

Ra/105 Nuav,l Nuav,r rms(Nuav,l) rms(Nuav,r) Nuexp
a Nuexp

b

2.00 3.66 3.57 0.251 0.249 3.807 3.771
3.55 4.07 4.30 0.377 0.307 4.394 4.51
5.06 4.69 4.57 0.280 0.348 4.801 5.038
9.07 5.21 5.52 0.398 0.456 5.481 5.972
16.0 6.14 6.25 0.505 0.795 5.555 6.079
21.2 6.71 6.69 0.541 0.518 6.225 7.075
26.0 7.04 7.14 0.497 0.554 6.402 7.345
30.6 7.24 7.27 0.536 0.577 6.868 8.067
40.0 8.10 7.58 0.747 0.535 7.228 8.635

a Referred to [13].
b Referred to [16].
measured profile [9]. However, there is a large difference for
the comparison between the calculated and measured tem-
perature rms curves in the central region of the horizontal
centerline as shown in Fig. 8(b), which indicates that the
simulated hot and cold vortical clusters in the region have no
more extensive interaction than that in the experiment of Betts
and Bokhari [9]. The rms of temperature in the central region
depends on the Rayleigh number and the calculated rms of
temperature at the origin in Fig. 8(b) is identical to that in
Fig. 7(b).
Fig. 12. Comparison between numerical and experimental results.
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3.3. Flow field

The flow patterns illustrated in Figs. 9 and 10 are given by
flood-type vorticity contours labeled from −2 to 2 with a
vorticity increment of 0.4. For Ra=1.6×106, the flood-type
contours of vortices in the z-direction in the midplane of z=0
is shown in Fig. 9. In Fig. 9(a), it is found that the flow
pattern at the instant t=20 has an excellent symmetry with
respect to the origin (x=y=0), indicating that the heat transfer
rate from the heated vertical wall should be identical to the
cooling vertical wall. At this instant, the cellular structures
merely occur in the region close to the top and bottom walls.

However, as the heat transfer on vertical direction continues,
this excellent symmetry of flow structure has to be broken up.
The wall jet margin becomes folding owing to the occurrence of
the cellular structures in the cavity central region, as seen in
Fig. 9(b)–(c). The comparison between Fig. 9(b)–(c) indicates
that the flow pattern should be time dependent, and the
instantaneously occurred turbulent flow pattern has no
absolutely symmetrical property. This concluding remark can
also be confirmed by observing the vortical fields of ωy at the
instants of t=80 and 160 shown in Fig. 10(a)–(b).

3.4. Heat transfer

The numerical results were summarized in Table 1, in which
the Ra dependence of the face-averaged Nusselt numbers and
their rms values were presented. The list of rms of Nusselt
numbers in Table 1 shows that the standard deviation of the
face-time-averaged Nusselt number varies in the range from 6 to
12.7% for the Rayleigh number varying from 2×105to 4×106.

Because the temperature profiles in the two wall jets are
distinguished due to the evolution of asymmetrical turbulent
flow structures such as in Figs. 9 and 10, it can be seen that their
is a small difference between the averaged Nusselt numbers on
the left and right faces, while the difference of their rms is
significant when Ra=1.6×106 and 4×106, but small rms are
found for other cases. When Ra=1.6×106 and 4×106, the
evolutions of the face-averaged Nusselt numbers have been
given in Fig. 11. It can be seen that the Nusselt numbers on the
left and right vertical walls have different temporal oscillating
histories.

As seen in Fig. 12, the current numerical results agree with
the empirical expression of Mihiev [13] (Nuexp=0.18Ra

0.25)
quite well, implying that the present coarse grid DNS is also
consistent with the early experimental fitting of Emery and
Chu [14].

4. Conclusions

The 3D turbulent natural convection in a differentially heated
air-filled tall cavity with a height–depth–width ratio of 16:8:1 is
numerically studied in this paper. It was found that the face-
time-averaged Nusselt number relates to the Rayleigh number
in terms of a power law with an index of 0.25 and the velocity
correlation coefficient in the central region of the vertical
centerline of spanwise midplane is spatially oscillating around a
value of 0.4. This wavy distribution is caused by the interaction
between the vortical clusters whose evolution is sensitive to the
Rayleigh number.

The numerical results agree well with the experimental data
of early Russian works. There is also a quantitative consistency
of the time-averaged velocity and temperature profiles in the
vertical and the horizontal centerlines of the spanwise midplane
with recent measurement based on the technique of Laser
Doppler anemometry and hotwire probe. The numerical
solutions also show that the flow fields in the tall cavity at
high Rayleigh numbers must lose their symmetries and become
fully turbulent.
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