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In this paper, the Chebyshev spectral collocation method is applied to explore the unsteady two dimensional
(1+2 type) laminar natural convection in a differentially heated square cavity at a Rayleigh number (Ra) of
107. The method has embedded the traditional Chorin's algorithm so as to avoid the trouble of seeking the
pressure field in the buoyancy driven wall-jet flow. The sensitivity of the δ− parameter has been numerically
investigated. It is found that when the δ value is over 11.6173, numerical instability occurs. Comparing the
maximum horizontal velocity component with the existing numerical data obtained by solving the Poisson's
equation of pressure field reveals that the Chorin's algorithm should be inapplicable for the solution of the
benchmark problem of natural convection at Ra=107 in thermal science.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Spectralmethod is prevailing in computational fluid dynamics(CFD)
[1–4]. The potentiality of the spectral method is that it has a very large
converging speed. The converging speed of the approximated numeri-
cal solution to the primitive problem is faster than any one expressed
by any power-index of N−1. From the view of approximation to the
original equation, the spectral method can be classified as the colloca-
tionmethodwhichpresents discretization in physical space, theGalerkin
method which seeks solution in spectral space, and the pseudo-spectral
method which provides discrete integration in physical space at first
and then presents transformation into spectral space for seeking the so-
lution. Among the threemethods, the collocationmethod is muchmore
suitable for treating with non-linear problems. Evidences can be found
in the previous numerical work of Huang et al. [5].

The so-called Chebyshev collocation spectral method is based on the
expansion by virtue of the Chebyshev polynomials. At first, it expands
the variable at collocation points and seeks the variable derivatives at
these points, then substitutes the expansions into the partial differential
equations, transfers the equation to an ordinary differential equation,
and finally seeks the approximated solution in physical space. Recent
numerical work concerned with the solution of non-linear differential
equations has also providedmore andmore evidence of the applicability

and accuracy of the Chebyshev collocation method [6,7]. However, less
exploration is reported in CFD.

On the other hand, natural convection in rectangular enclosures has
been extensively studied, since its potentiality in engineering applica-
tions such as building air distribution [9,10] is relatively evident. A
brief literature view about the eddy viscosity type k-�model simulation
of turbulent natural convection in a rectangular cavitywere reported by
Niu and Zhu [11], and it was concluded that the k-�model cannot satis-
factorily predict the turbulent quantities, such as the root mean square
of velocity components and temperature.

The laminar air natural convection in a square cavitywith a heating
strip was investigated experimentally by virtue of a two-dimensional
particle image velocimetry (PIV) system [12], and the turbulent air
natural convection in a differentially heated square cavity was studied
using micro-thermocouples and a Laser Doppler Anemometer(LDA)
[13–15].

Current numerical simulations have studied the second largest
Lyapunov exponent and transition to chaos of natural convection in
a rectangular cavity [16], the laminar natural convection in a closed
square cavity with special heating modes [17–19] and with special
numerical algorithm [20,21], the turbulent natural convection in an
inclined cavity with a wavy heating side wall [22], and the conjugate
turbulent air natural convection and surface radiation in rectangular
enclosures heated from below and cooled from other walls [23].

The primary objective of this paper is to apply the Chebyshev collo-
cation spectral method to explore the practical applicability of such a
spectral method by seeking the numerical solutions of the 1+2 type
laminar natural convection in a differentially heated square cavity at a
Rayleigh number of 107. Even though Huang et al. [5] have confirmed
that that themethod can obtain especially satisfactory numerical results
when the Chorin's algorithm is used together, the solution sensitivity to
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the δ− parameter has not been explored. This paper studies this issue,
which would reveal that the δ− value has a significant impact on nu-
merical stability, and the Chorin's algorithm may be unsuitable to the
numerical simulation at this Rayleigh number.

2. Governing equations

Consider the turbulent natural convection of air in a rectangular
enclosure in a Cartesian coordinate system, in which x is the horizon-
tal coordinate, with z denoting the vertical direction. The origin is allo-
cated at the left bottom corner of the square cavity. For the benchmark
problem considered, a schematic is depicted in Fig. 1, where the enclo-
sure is filled with a fluid with kinematic viscosity v and thermal diffu-
sivity κ. Buoyancy results in a clockwise flow in the mid plane (z=0)
because of the heating on the left hot wall with temperature Th and
cooling on the right cold wall with temperature Tc. The horizontal
walls are assumed as adiabatic. Also, we assumed that the Boussinesq
approximation of buoyancy is valid and can be used to simplify the
momentum equations.

Let ΔT=Th−Tc, ρ0 be the air density at temperature (Th+Tc)/2,
and βT be the coefficient of volumetric expansion of fluid, following
the approach of Le Quéré et al. [8], we select W0=κ/H and the cavity
heightH as the velocity and length scales, hence the time and pressure
scales should be t0=H/W0 and ρ0W0

2. Let Θ=[T−Tc]/ΔT, and the di-
mensionless governing equations for the turbulent natural convection
problem can be written as follows:

∇⋅u ¼ 0 ð1Þ

ut þ u⋅∇u ¼ −∇pþ λ Θ−0:5ð ÞPrRaþ Pr∇2u ð2Þ

Θt þ u⋅∇Θ ¼ ∇2
Θ ð3Þ

where λ=(0,1) denotes the unit vector in the vertical direction, and
Pr(=ν/κ) is the Prandtl number of fluid, with the Rayleigh number
Ra=gβTH

3ΔT/(νκ).
The non-slip boundary condition for u is used on the cavity walls

with the adiabatic condition for Θ used on the front and rear walls.
As shown in Fig. 2, the boundary condition for Θ on the left hot wall is

Θ ¼ 1; for x ¼ 0; z∈ 0;1ð Þ ð4Þ

On the right cold wall, it becomes

Θ ¼ 0; for x ¼ 1; z∈ 0;1ð Þ ð5Þ

On the top and bottomwalls, the value of Θ should be carefully de-
scribed according to the adiabatic condition, which will be detailed in
the following section.

3. Numerical method

3.1. Chebyshev collocation method

The governing Eqs. (1)–(3) of laminar natural convection were
solved by the Chebyshev collocation spectral method, which, has been
detailed by Canuto and Hussaini et al. [24]. Here, we describe the spec-
tral method briefly. The Chebyshev polynomial can be written as

Tk xð Þ ¼ cos kθð Þ; θ ¼ arccos xð Þ ð6Þ

where x∈ [−1,1]. The Chebyshev function Tk(x) is characterized by the
relationship to its first order derivative as given below

Tk xð Þ ¼
T ′
kþ1 xð Þ= kþ 1ð Þ; for k ¼ 0;
T ′
kþ1 xð Þ= 2 kþ 1ð Þ½ �; for k ¼ 1;
T ′
kþ1 xð Þ−T ′

k−1 xð Þ� �
= 2 kþ 1ð Þ½ �; for k > 1:

8<
: ð7Þ

Based on which, the expression for T′k(x) can be written as

T ′
k xð Þ ¼

Xk−1

n¼0

2k
Cn

Tn; merely for odd nþ kð Þ ð8Þ

where

Cn ¼ 1=2; for n ¼ 0;N
1; for n ¼ 1; ⋯;N−1

�
ð9Þ

with N being the collocation point number. For any function f(x),
selecting the Gauss–Lobatto type collocation points xj=cos(jπ/N),
the function has a Chebyshev polynomial as follows

f xð Þ ¼ 1
2

a0T0 xð Þ þ aNTN xð Þ½ � þ
XN−1

j¼1

ajTj xð Þ ð10Þ

in which the coefficient of expansion has the form of aj ¼
2
N∑

′N
n¼0Tj xnð Þf xnð Þ. Note that the summation with a prime implies

that the first and the end term must have a factor of 1/2.
Taking the first derivative of Eq. (10), it is convenient to yield

f ′ xið Þ ¼ ∑′N
j¼0ajT ′

j xið Þ ¼ ∑′N
n¼0

2
N
∑′N

j¼0T ′
j xið ÞTj xnð Þ

� �
f xnð Þ

¼ ∑′N
n¼0 Ax½ �in f xnð Þ

8<
: ð11Þ

where Ax½ �in ¼ 2Cn
N ∑′N

n¼0T
′
j xið ÞTj xnð Þ, for n=0, 1, ⋯, N. Similarly, taking

the derivative of Eq. (11), we have

f ″ xið Þ ¼
XN
n¼0

Ax½ �in f ′ xnð Þ ¼
XN
j¼0

XN
n¼0

Ax½ �in Ax½ �nj
 !

f xj
� �

¼
XN
j¼0

Bx½ �ij f xj
� �

8>>>>><
>>>>>:

ð12Þ

where Bx½ �ij ¼ ∑N
n¼0 Ax½ �in Ax½ �nj, for n=0, 1, ⋯, N. Similarly repeating

again, we can derive the expressions for higher order derivatives
based on the Chebyshev expansion given by Eq. (10).

More recent fresh result has been obtained from a preliminary in-
vestigation, by Huang et al. [5], where the foregoing briefly described
Chebyshev collocation spectral method has been used to seek the solu-
tion of the 1+2 type laminar natural convection in a differentially heat-
ed square cavity. Assume the solution region be D={(x, y):x∈[0, 1],
y∈ [0, 1]}, tomaintain the cross-sectional property of function, the Che-
byshev function must be transformed into ~T j xnð Þ ¼ Tj 2xn−1ð Þ so that
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Fig. 1. Schematic of turbulent natural convection in an air-filled square cavity.
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the collocation point (xn, zm) for the integer ranges n∈(0,N) andm∈(0,
M) can be written as

xn ¼ 1
2

1−cos nπ=Nð Þ½ �

zm ¼ 1
2

1−cos mπ=Mð Þ½ �

8><
>: ð13Þ

Using Eqs. (11) and (12), we can yield the following derivatives of
the general function ϕ(xi, zj, t)

ϕx xi; zj; t
� �

¼
XN
n¼0

Ax½ �inϕnj tð Þ

ϕxx xi; zj; t
� �

¼
XN
n¼0

Bx½ �inϕnj tð Þ

ϕz xi; zj; t
� �

¼
XN
n¼0

Az½ �inϕnj tð Þ

ϕzz xi; zj; t
� �

¼
XN
n¼0

Bz½ �inϕnj tð Þ

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð14Þ

The general function ϕ is just a representative of flow variables u,
p and Θ. Using Eq. (14), we can transfer the Boussinesq type govern-
ing equations into ordinary differential ones. Different from the previ-
ous work of Chorin [25] in which the non-linear convective terms are
treated by the Adams–Bashforth scheme, in the present numerical
work, we prefer to use the fourth order Runge–Kutta scheme. Follow-
ing the work of Chorin [25], we also use Chorin's algorithm to avoid
the solution of pressure field. Otherwise, the solution of Poisson's
equation with non-linear right-hand term certainly requires a larger
amount of computational resource. We will focus on the numerical
sensitivity of δ− parameter used in the expression of artificial
compressibility.

3.2. Chorin's algorithm

In Chorin's algorithm, an artificial density is introduced to link
flow pressure algebraically in the following form

p ¼ 1
δ
PrRa

	 

⋅ρ ð15Þ

where ρ is the artificial density, and δ− is the parameter usually
called as artificial compressibility. The density ρ is assumed to satisfy
the revised continuity equation

∂ρ
∂t þ∇u ¼ 0 ð16Þ

As the solid wall boundary condition should be applied, from the
Boussinesq type governing Eqs. (2) and (3), conveniently, we can ob-
tain the boundary conditions as follows

∂ρ
∂x ¼ δ⋅ Ra−1∇2u

h i
∂ρ
∂z ¼ δ⋅ Ra−1∇2wþ Θ−0:5ð Þ

h i
8>><
>>: ð17Þ

where u andw are respectively the horizontal and vertical velocity com-
ponents of u. What should be addressed is: the Chorin's algorithm has a
potential of avoiding the further solution of pressure field, instead of
time-step marching solution of Eq. (16).

3.3. The second type boundary condition of Θ

On the top and bottomwalls of the cavity, we assume that the walls
are adiabatic, leading to the second typehomogeneous boundary condi-
tion. To accurately implement this condition, special care is required.
Using the Chebyshev expansion as reported previously [7], we obtain

Θz xi; zj; t
� �

¼ Az½ �j0Θi0 tð Þ þ Az½ �jMΘiM tð Þ
n o

þ
XM−1

m¼1

Az½ �jmΘim tð Þ ð18Þ

Setting the subscript j as 0, or M, using the adiabatic condition, we
have

Az½ �00Θi0 tð Þ þ Az½ �0MΘiM tð Þ ¼ −
XM−1

M¼1

Az½ �0mΘim tð Þ

Az½ �M0Θi0 tð Þ þ Az½ �MMΘiM tð Þ ¼ −
XM−1

M¼1

Az½ �MmΘim tð Þ

8>>>><
>>>>:

ð19Þ

Based on which, we can yield the temperatures on the top and
bottom walls, instantaneously. Similarly, we can yield the artificial
densities ρ on relevant walls.

4. Results and discussion

Using the numerical method described above, computer simula-
tion of air laminar natural convection schematically shown in Fig. 2
was carried out in a domestic personal computer with a memory of
1Gb. The time step is set as 4.125×10−7, with the time unit equal
to κ/H. The grid number is set as 65×65, identical to the previously
published spectral work of Le Quéré et al. [8], where the pressure
field is obtained by solving the Poisson's equation. Using the present
simulator, a single case requires a computational time of around
23 h 39 min 23 s. Classified by the δ− parameter, three cases are
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Fig. 2. Evolution of maximum values of velocity components in the square cavity for three cases: (a) δ=2.6173; (b) δ=11.6173; (c) δ=21.6173.
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labeled by I, II, and III, with the δ− values shown in Table 1. Note that
when the same time step is used, the computer simulator diverges for
the case of δ=1.6173. When the δ=3.6173 and 7.6173, the simulator
can normally complete the calculating process. This indicates that the
Chorin's algorithm must be sensitive to the parameter δ.

Furthermore evidence of the solution to the δ− parameter's sensi-
tivity can be seen in Fig. 2(a–c). This figure indicates that when δ−
value is identical to 11.6173, as seen in Fig. 2(b), the calculating pro-
cess illustrated by both the evolution curves of velocity components'
maximums decaying oscillation, implies that δ=11.6173 is close to
the critical point value for numerical stability. When δ is assigned as
21.6173, as seen in Fig. 2(c), the calculating process must be in the re-
gime of numerical instability. The sensitivity to δ can also be found in
the distributions of left wall (or heating wall) Nusselt number at the
computational terminative moment, as shown in Fig. 3. It is seen
that the temperature at the near wall collocation point has unpracti-
cal fluctuation which does not appear for the cases of I(δ=2.6173)
and II(δ=11.6173).

It should be noted that: even though the calculating process is sta-
ble, the maximum horizontal velocity component is evidently over
predicted, as can be seen in the third line of Table 2. Referring to
the experimental data given by Tian and Karayiannis [14], the calcu-
lated value of Le Quéré et al. [8] is more accurate. This suggests that
the Chorin's algorithm used for the avoidance of solving Poisson's
equation for pressure must be given up for the numerical simulation
of the 1+2 type benchmark problem in thermal science.

The temperature and vorticity contours at the calculating termina-
tive moment are shown in Fig. 4(a–b). The highly symmetrical char-
acteristics of thermal and flow patterns to the square center do
reveal that Chebyshev collocation spectral method is potential.

5. Conclusions

The Chebyshev spectral collocation method has been implemented
to explore the unsteady two dimensional (1+2 type) laminar natural
convection in a differentially heated square cavity at a Rayleigh num-
ber(Ra) of 107. This method is used together with the well known

Chorin's algorithm to avoid the trouble of pressure finding. When the
value of the δ parameter in the Chorin's algorithm is over 11.6173,
there occurs numerical instability. It is found that the obtained maxi-
mum horizontal velocity component in the current work has been
largely over predicted than the existing data. This indicates that for

Table 1
The values of δ parameter used in the computer
simulation.

Case Δ

I 2.6173
II 11.6173
III 21.6173
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Fig. 3. Left-wall Nusselt number distribution at the terminative moment for three cases.

Table 2
The measured Θ on the top and bottom walls as a function of x.

Ra This work Le Quéré et al.

x
z

0:1214
0:9665

X1
0:879

a

max(u) 389.6 148.8
x
z

0:0215
0:4655

0:0213
Z2

a

max(w) 701.2 699.3
Nu1/2

b 16.571 16.51
Nuav

c 16.536 16.52
Z 0.0181 0.018
Numax

d 39.371 39.37
Z 1 1
Numin

d 1.365 1.376

a The X1 and Z2 values were not given by Le Quéré et al.
b Nu1/2 is defined by Nu1=2 ¼ ∫1

0 uΘ−∂Θ
∂x

h i
x¼1=2

dz.

c Nuav is defined by Nuav ¼ ∫1
0 −∂Θ

∂x

h i
x¼0

dz.
d Numax and Numin are respectively the maximum and minimum of left-wall Nusselt

number.

0
1

0.
1

0
2

0.
2

0.2

0.20.2

0.
3

0.
30.30.3

0.
3

0.
4

0.
4

0.40.4

0.
4

0.
5

0.50.5

0.
5

0.5

0.
6

0.60.6

0.6

0.
6

0.70.7

0.7

0.
7

0.
7

0.8
0.80.

8
0.

8

0
8

0.
9

0 .
9

0.
9

x

z

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
a)

x

z

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
b)

Fig. 4. (a) Contours of temperature field at the moment of terminative simulation;
(b) Contours of the vorticity at the terminative moment. Note that, in part (b), the vor-
ticity contours are labeled by values from −4000 to 4000, with an increment of 1000.

596 C. Lin et al. / International Communications in Heat and Mass Transfer 39 (2012) 593–597



Author's personal copy

Rayleigh number beyond the value of 107, the well known Chorin's al-
gorithm cannot be embedded into the Chebyshev collocation method.
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