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This paper presents the large eddy simulation (LES) results of turbulent heat and fluid flows in a straight
square duct (SSD) at higher Reynolds numbers ranged from 104 to 106, which are based on the bulk mean
velocity and the duct cross-sectional side length. A sub-grid model is proposed, which assumes that the
sub-grid stress and heat flux are, respectively, proportional to the temporal increments of the filtered
strain rate and temperature gradient, with the proportional coefficient determined by calibrating the fric-
tion factor. The temperature was taken as passive due to the neglect of buoyancy effect. The Taylor and
Kolmogorov scales in the SSD are predicted and the results show that the LES results are better than c-
DNS results. The LES results can explain why the c-DNS is applicable to the problem at a moderate Re, and
reveal that the largest relative deviation of the overall mean Nusselt number is less than 10% as compared
with existing experimental correlations. With the rise of Reynolds number, the mean secondary vortex
pairs move towards the corners and have smaller size, while smaller vortices also occur in the instanta-
neous secondary flow. Empirical mode decomposition (EMD) was carried out to analyze the fluctuation of
the x-averaged cross-sectional origin temperature at Re ¼ 105.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction sub-grid eddy effect becomes more and more significant on the
The problem of turbulent heat and fluid flows in a straight
square duct (SSD) is fundamental in thermal science and fluid
mechanics. The turbulence in the SSD has a remarkable change
in flow structure due to the existence of the so-called Prandtl’s sec-
ond kind secondary flows [1]. The secondary flow has a significant
effect on the transport of heat and momentum as uncovered by the
recent large eddy simulation (LES) [2]. Extensive studies have been
pursued. Examples are the work based on the algebraic stress mod-
el of turbulence [3], those emphasizing the effect of rib roughened
wall [4–7], the effect of a square bar detached from the wall [8], the
effect of periodic array of cubic pin–fins in a channel [9], and the
effect of inside tubes with helical fins [10].

The coarse-grid direct numerical simulation (c-DNS) [11] at a
bulk mean Reynolds number of 104 has presented some primary
characteristics of forced turbulent heat convection which is consis-
tent with experimental observations, indicating that the c-DNS is
applicable at the moderate Reynolds number and grid resolution
used. However, since with the increase of Reynolds number the
ll rights reserved.
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solution of large-scale turbulence, the c-DNS produces larger dis-
crepancy in numerical results as compared with existing measured
data.

A brief literature review is given in the previous work [11].
More developments in the study of turbulence will be introduced
below. From the Navier–Stokes equations, a simple nonlinear
dynamical system is developed for the delta-vee evolution , which
shows the ubiquitous non-Gaussian tails in turbulence have their
origin in the inherent self-amplification of the delta-vee [13].
One-dimensional Burgers turbulence driven by a white noise in
time random forces has statistical properties surprisingly similar
to real-life three-dimensional (3D) turbulence: Kolmogorov energy
spectrum, intermittency and the scaling properties of the dissipa-
tion rate fluctuations, and bifractality of probability density func-
tion of velocity difference [14,15]. However, whether this
similarity can ensure a well repetition of real-life turbulence re-
lated to fluid coherent motions [16–18] needs to be verified.

The a-NS model [19] has attracted some attention in recent
years [20,21]. The non-standard analysis of turbulence [22] allows
the use of c-DNS to obtain relatively accurate results at moderate
Reynolds numbers [23–34]. The earlier DNS [23] indicated that tur-
bulent statistics along the wall-bisectors agrees well with mea-
sured channel data of plane channel flow [35–38], despite the
influence of the sidewalls in the former flow. For higher Reynolds
number turbulence, it seems that large eddy simulation is better,
and evidence can be found in previous works [39–47].
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Nomenclature

cp specific heat at constant pressure (J/kg K)
Ci ith intrinsic mode function
f mean friction factor
H duct section side length (m)
ku turbulence kinetic energy
Nuav mean Nusselt number in Eq. (14)
p normalized pressure
Pr Prandtl number
Qw heat transfer rate per unit area ðW=m2Þ
u normalized velocity vector
R residue of EMD
Re balk mean Reynolds number
Res friction Reynolds number
Sij filtered strain rate
sij strain rate fluctuation

T temperature
Ts mean friction temperature (K)
u;v ;w normalized velocity components
Um balk mean velocity ðm=sÞ
us mean friction velocity ðm=sÞ
x; y; z Cartesian coordinates
yþ ¼ ðyþ 0:5Þus=m, wall coordinate
Hþ � hþ=13, normalized temperature
/ pressure potential
ku Taylor scale in the unit of H
gu Kolmogorov scale in the unit of H
m kinematic viscosity of fluid ðm2=sÞ
� dissipation rate of ku

rh turbulent Prandtl number
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This paper presents the numerical results of turbulent large-
scale motion based heat and fluid flows in a SSD at various Rey-
nolds numbers in the range from 104 to 106 at a given grid resolu-
tion with a grid number of about 1:2� 106. The sub-grid stress and
heat flux are assumed to be proportional to the temporal incre-
ments of the strain rate and temperature gradient, and the filtering
is based on the so-called monad average [22]. The model coeffi-
cient is sought by calibrating the friction factor. The present sub-
grid model has an advantage of elucidating why the c-DNS of tur-
bulence at moderate Reynolds number is applicable. The tempera-
ture is taken as passive so that the buoyancy effect can be
completely neglected. It is assumed that the flow Mach number
is lower and the air flow can be considered as incompressible;
the temperature dependence of the thermal–physical properties
of air can be ignored. The temperature equation proposed in the
DNS work [32] is used for the case of isoflux heating on the walls.
The governing equations are solved numerically by a projection
method based on a finite difference scheme [11], which is im-
proved from the numerical work of wake flow simulation [12].
The Taylor and Kolmogorov micro-scales of turbulence in the SSD
are found numerically, indicating that the grid resolution required
for the traditional means DNS should be very severe.

2. Governing equations

At higher Reynolds numbers, sub-grid scale effect on large-scale
motions should be carefully accounted. Additional assumptions are
required in the non-standard analysis of turbulence [22]. In previ-
ous LES works [39–46], sub-grid stress is usually assumed to be the
product of the eddy viscosity and the locally filtered strain rate,
which is merely an analogy to the constitutive relationship in New-
tonian fluid mechanics. The sub-grid model used in LES has not
successfully explained at which Reynolds number the LES model
should be applicable. To overcome this paradoxical problem, here
we suggest an algebraic model which assumes the sub-grid stress
is proportional to the temporal increment of filtered strain rate,
Sij ¼ 1

2
@ui
@xj
þ @uj

@xi

� �
. It can be expressed by
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0
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Here u0i stands for the velocity fluctuation component in xi

direction, Dt denotes the time step in the simulation, and the coef-
ficient a2 needs to be calibrated by friction factor measured in
experiments, which should be dependent on Reynolds number.
Physically, a2 stands for a kind of sub-grid viscosity. According to
the results of previous studies [39,48], the sub-grid viscosity a2 is
not a constant in the presence of wall effects. Therefore, we assume
that a2 decays with the wall coordinate yþ in a way of
½1� expð�yþ=25Þ�2, where yþ ¼ yus=m; y denotes the normal dis-
tance to the wall, with us denoting the mean friction velocity
and m representing the kinematic viscosity of fluid.

It is noted that the sub-grid model is derived approximately
from the a2-introduced accurate projection method in the form
of Eq. (8). In the approximation, the term ½r � ða2ruÞ�nþ1=2 in the
left-hand side of Eq. (8) was replaced by ½r � ða2ruÞ�n, rather than
directly omitted as in the traditional methods from which the sub-
grid stress should be proportional to the filtered strain rate.

Using the discretized form of temperature Eq. (11) and a similar
approximation, the sub-grid heat flux can be derived to be propor-
tional to the temporal increment of filtered temperature gradient,
@H
@xj

, we have

�u0jh
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where H and h0 are, respectively, the monad averaged and fluctuat-
ing temperatures. The factor 1/2 is used to maintain a consistency in
form with sub-grid stress model where the velocity field is diver-
gence free for incompressible turbulence. The ratio ½j ¼ 2Pr=rh� is
used to reflect the peculiarity of turbulent diffusion of temperature,
where rh denotes the turbulent Prandtl number. the sub-grid model
based on monad filtering is expected to have the advantage of elu-
cidating why c-DNS is possibly successful in duct flow study at a
moderate Re around 104. Evidence will be given in this LES work.

Let the origin of the Cartesian coordinate system set at the cen-
tral point of the computational domain, and the coordinates in the
streamwise, transverse and spanwise directions be xðx1Þ; yðx2Þ and
zðx3Þ, respectively. We further assume that the air flow in the SSD
is heated under an isoflux condition, implying that the time-aver-
aged wall heat flux does not change in the x-direction. This heating
mode is equivalent to an assumption that the time-averaged wall
temperature hTwi should increase linearly in x-direction, due to
the global heat balance for a fully developed thermal field. There-
fore, the bulk mean temperature hTmi should also increase linearly
in the x-direction, i.e., @hTmi=@x ¼ @hTwi=@x ¼ const.

Let 13Ts denote the temperature scale, the dimensionless tem-
perature is defined as:

Hþ ¼ ðhTwi � TÞ=ð13TsÞ � hþ=13 ð3Þ

where Ts is the friction temperature defined by Qw=ðqcpusÞ. The fac-
tor 13 is used for synchronizing the computation, i.e., it allows the
solution of temperature by using the same time step used in the
velocity calculation. Using bulk mean velocity Um and the duct
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cross-sectional side length H as the velocity and length scales in
variable normalization, and inserting the sub-grid heat flux ex-
pressed by Eq. (2) into energy conservation relation, we obtain
the dimensionless temperature Hþ equation as follows:

Hþt þ u � rHþ � 4us

13Um
R

A udA
u

¼ 1
RePr

r2Hþ þr � ja2

Pr
rðHþt Dt=2Þ

� �
ð4Þ

where a2 is normalized by HUm; Dt is normalized by H=Um,
dA ¼ dydz, is the element of cross-sectional area, u is the normalized
streamwise velocity component, and us is the mean friction veloc-
ity. The Reynolds number Re is defined as HUm=m, the Prandtl num-
ber of air Prð¼ m=cÞ is 0.71. The last term on the left-hand side of the
Eq. (4) corresponds to �uf@hTwiþ=@xg=13, as stated by Kasagi et al.
[32] in case of turbulent channel flow.

With the sub-grid stress model (1), the governing equations of
the turbulent flows can be written as

r � u ¼ 0 ð5Þ

ut þ u � ru ¼ �rpþ 1
Re
r2uþr � ½a2rðutDt=2Þ� þPdi1 ð6Þ

where dij is the Kronecker delta tensor, P represents the mean pres-
sure gradient in the x-direction, which can be adjusted dynamically
to maintain the constant mass flux in the SSD flow [49]. The initial
flow field is assumed to be laminar, and perturbed by an approach
incorporating the initial acceleration effect. The streamwise peri-
odic condition is used with the non-slip conditions on the duct
walls. The normalized temperature Hþ is zero on the SSD walls,
and should be identical to ½Pr � u=ð13us=UmÞ� as the initial condition
of the temperature field.

3. Numerical method

The temperature and velocity governing Eqs. (4)–(6) have in-
cluded the sub-grid model reflecting the sub-grid eddy effect. Since
the model coefficient a2 at yþ ! 1 stands for the isotropic small
eddy viscosity, it is a constant dependent on the Reynolds number.
By some proper changes, the existing numerical methods in DNS,
such as those described in Refs. [10,50–54], are still applicable.

The solutions of the Eqs. (4)–(6) are sought by the accurate pro-
jection algorithm PmIII [55] in a non-uniform staggered grid sys-
tem. Due to the further use of the sub-grid model, the solution
method is given below.

Let the intermediate velocity vector, the pressure potential and
the time level be denoted by �u; / and n, respectively. Assume
H ¼ ðu � rÞu, then let

unþ1 ¼ �u� Dtr/ ð7Þ

we can calculate �u by

�u� un
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and calculate pressure p by

pnþ1=2 ¼ 1þ Dtr � 1
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where the pressure potential / must satisfy the Poisson’s equation

r2/ ¼ r � �u=Dt ð10Þ

while the temperature Hþnþ1 can be calculated by
Hþnþ1 �Hþn
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where H4 ¼ ½u � rHþ � 4us
13Um

R
A

udA
u�, and the terms at the level of

(nþ 1=2) are calculated explicitly using a second-order Euler pre-
dict-correction scheme in temporal, where spatial difference is
evaluated by using the scheme similar to the previously used
[11]. The pressure potential Poisson’s equation is solved by the
approximate factorization one (AF1) method [56]. The streamwise
periodicity of pressure potential is appropriately considered in the
AF1 iteration. The temperature Eq. (4) is solved by time marching.
The implicit second-order Crank–Nicolson for the right-hand side
diffusion terms, and fourth-order upwind scheme for the left-hand
side convection terms are used in spatial discretization.

4. Results and discussion

The turbulent heat and fluid flows in a SSD at six bulk Reynolds
numbers ð104;5� 104;105;2� 105;8� 105, and 106Þ were simu-
lated numerically, in which the turbulent Prandtl number of tem-
perature rh was set as 0.9. The simulation was conducted in the
staggered grid system, where dense grids were distributed in the
near wall region, with the grid distance regulated by a power
law. Nearly uniform streamwise grid had the grid number of 121,
that means the 15 x-directional meshes near the inlet section were
amplified gradually by a factor of 1/0.9, while the 15 x-directional
meshes near the exit section were shortened gradually by a factor
of 0.9, the meshes in the central region were uniform. The mini-
mum and maximum mesh lengths in the x-direction were, respec-
tively, 0.01266 and 0.06149. Non-uniform spanwise and transverse
grids had the same grid number of 101, there were 25 non-uniform
meshes near each duct wall, the mesh lengths from the wall to the
central region were amplified gradually by a factor of 1/0.85.
Therefore, the minimum mesh length for the nearest wall mesh
was 2:8� 10�4, while the maximum mesh length for the middle
region meshes was 0.01636.

The normalized streamwise length of the computational do-
main was equal to 6.41, since the previous DNS study [24] has
shown that the self-correlation coefficient of the streamwise veloc-
ity component is close to zero when the distance from the origin is
equal to 3.2. The criterion for pressure potential iteration was cho-
sen so that the relative error defined previously [57] should be less
than 3� 10�8. The large eddy simulation (LES) work focuses to:

� Explore the fluid flow characteristics by calculating the turbu-
lence statistics, the mean and secondary flows and Taylor and
Kolmogorov micro-scales.

� Explore the dependence of heat and fluid flow characteristics on
the Reynolds number, and reasons why the DNS and c-DNS of
turbulent flows can give satisfactory results at moderate Rey-
nolds numbers.

� Predict the Nusselt numbers of the forced turbulent heat con-
vection in a SSD at higher Reynolds numbers, and investigate
the heat transfer characteristics by illustrating the temperature
fluctuation intensity and intrinsic mode functions obtained by
empirical mode decomposition [58].

4.1. Turbulence statistics

Based on the average in time and streamwise direction, statisti-
cal values of turbulent variables along the wall-bisector were
evaluated.The initial field was obtained by reading the unformatted



Table 1
The sub-grid viscosity ða2Þ and viscosity ratio at yþ ! 1 as functions of Re.

Re=104 1 5 10 20 80 100

105a2 0.75 0.75 0.75 0.74 0.368 0.316

a2Re 0.075 0.375 0.75 1.48 2.94 3.16

Table 2
The 102f as a function Re.

Re=104 1 5 10 20 80 100

102fc-DNS
a 3.00 1.88 1.40 1.00 0.465 0.41

102fLES
b 3.00 2.04 1.69 1.51 1.21 1.16

102fexp 3.10 2.08 1.78 1.55 1.21 1.16

a Based on c-DNS when a2 ¼ 0.
b Based on LES when values of a2 in Table 1 are used.
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temporary data file saved at the time of t ¼ 200 for the Reynolds
number of 104. To remove the effect of Reynolds number change,
the numerical results in the time range from 200 to 300 were
not used for the statistical analysis of turbulence. Such a time
range of 100 equals 15.6 turnover times, and is sufficiently long
to make the simulation results after the time of t = 300 become sta-
tistically steady. Hence, the time range used in the average was
from t = 300 to 400, in which a data sequence with five thousand
records was used in the analysis of turbulence statistics. The sub-
grid viscosity a2 at yþ ! 1 and mean friction factor as functions
of Re were supplementarily shown in Fig. 1(a and b) and Tables
1 and 2. The sub-grid viscosity a2 at yþ ! 1 was obtained by cal-
ibrating the friction factor with the empirical correlation of Swa-
mee and Jain [59], which can also be found in the book of
Roberson and Crowe [60].

At a higher Reynolds number, small eddies play a more impor-
tant role in turbulent diffusion of mass and momentum. As shown
in Table 1, the ratio of sub-grid viscosity to fluid kinematic viscos-
ity denoted by a2Re at yþ ! 1 becomes larger, while at a moder-
ate Re, such as Re ¼ 104, the viscosity ratio is as small as 7.5%,
elucidating why coarse-grid DNS can give satisfactory results in
turbulence exploration. Using the ratio, it can also explain why
the c-DNS has lost its potential in simulating the SSD flow at higher
Reynolds numbers, since as soon as the mean friction factor was
largely under-predicted, then significant deviations of the mean
velocity profile and rms values of velocities would occur.

The mean profiles of velocity and temperature based on the
sub-grid model in the LES work are compared with the analytical
result from the a-NS model [19] and the existing numerical
[24,40] and experimental results [36,63], as shown in Fig. 2(a
and b). Along the wall-bisector, the velocity profiles at various Rey-
nolds numbers are in good agreement with the published results,
showing that the sub-grid model has an application potential.
The mean temperature in almost the whole buffer layer of
yþ 2 ð5;30Þ is slightly lower when the Reynolds number increases
from 104 to 105. For the case of Re ¼ 106, the nearest grid distance
to the wall is around yþ ¼ 10, and the temperature profile has
slightly shifted upper.

The velocity bands are defined by ½u� ¼maxðuÞ �minðuÞ; ½v � ¼
maxðvÞ �minðvÞ; ½w� ¼ maxðwÞ �minðwÞ, here u;v ;w represent
the x-averaged velocities, and the mid point of the band is adjusted
so that it has the time-averaged value. The velocity bands are plot-
ted as functions of yþ at four Reynolds numbers, as seen in Fig. 3.
The turbulent flow in the SSD at higher Reynolds numbers does
have intensive velocity fluctuations, suggesting that the flow is ful-
filled by the coherent structures composed of the X type vortices
and vortical tubes and rings [17]. The outer margin is in general
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Fig. 1. The sub-grid viscosity at yþ ! 1 (a) and the friction factor (b) plotted as functions
friction factor with the explicit expression of Swamee and Jain [59]: f ¼ 0:25=flog½ks=ð3
where the equivalent sand roughness ks was set as zero in the calibration.
about 2.5, except for ½v � at Re ¼ 104 that has larger values in the
viscous sublayer ðyþ 6 5Þ.

A comparison of turbulence intensities is given in Fig. 4. The in-
crease of Re leads to the outer shift of the peaks of velocity rms
curves. In particular, at Re ¼ 106, the peak of urms occurs at a posi-
tion of yþ > 100, indicating that the grid resolution to some extend
seems to be inappropriate. Evidence can also be seen in Fig. 5,
where Reynolds stress comparison is shown. Merely qualitative
agreement is observed for the calculated Reynolds stress at the
lower three Reynolds numbers, while for Re ¼ 106, the Reynolds
stress would have been largely under-predicted. The reason is that
the viscosity ratio a2Re has increased to 3.16.

4.2. Reynolds number effect

The Reynolds number effect has been partially illustrated above
by turbulence statistics along the wall-bisector. To further detail
the effect, the further quadrant-averaged mean and instantaneous
secondary flow structures are demonstrated in Fig. 6. The mean
secondary flow, as seen in Fig. 6(d–f), occurs two vortex pairs in
the corner, distributing symmetrically to the duct diagonal bisec-
tor. The near wall vortices are slender than the near diagonal coun-
ter-rotating vortices, which transports the fluid between them to
the duct corner. With the increase of Re, the scales of the coun-
ter-rotating vortices become smaller, and closer to the corner.

However, as seen in Fig. 6(d–f) the instantaneous secondary
vortices compose of irregular and chaotic patterns. The mutually
stretching of the coherent vortices [16,17] is the primary reason
that generates the irregular patterns. Again, the instantaneous sec-
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ondary vortices have finer scales, with more occurring in the near
wall region.

The quadrant average based distributions of the Taylor and Kol-
mogorov micro-scales are shown by the contours of logðkuÞ and
logðguÞ at three Reynolds numbers, as seen in Fig. 7. The Taylor
and Kolmogorov micro-scales ku are predicted by using[see in
Ref. [61]]

k2
u ¼ 10mku=�; g2

u � ðm3=�Þ1=2 ¼ k2
u mð�=mÞ1=2

=ð10kuÞ
h i

ð12Þ

here ku ¼ 1
2 u02i is the time and x-averaged turbulent kinetic energy,

and � is the dissipation rate of ku given by

� ¼ 2msijsij; sij ¼ ð@u0i=@xj þ @u0j=@xiÞ=2 ð13Þ

The Taylor scale is artificially defined, and does not represent any
group of eddy sizes. The Kolmogorov scale is the smallest eddy
scale, but far larger than the mean free path [61]. It is seen that
the Kolmogorov scale decreases with the increase of Re. It is smaller
in the near wall region, and a little bit larger in the flow core. The
spatial derivatives of the scale in the flow core is relatively low at
a higher Reynolds number. For instance, at Re ¼ 106; logðguÞ in the
flow core region is about �3.03 ± 0.03. The values of gu show that
the grid resolution used is largely incompatible with the turbulent
flow, since the requirement for a tradition DNS of turbulent heat
and fluid flows in the SSD at a Reynolds number of about 106 is that
the grid number in y- or z-direction should be as large as 103. This
explains why the calculated Reynolds stress peak value (�0.4) is far
lower than around 0.8, which could be postulated from the mea-
sured data given at a relative low Re [Fig. 5]. The illustration of
the micro-scale distribution shows that for higher Re turbulent
flows LES is better, it can present quantitatively satisfied mean pro-
files and qualitatively consistency of the turbulence intensities, the
Reynolds stress and temperature variance. However, traditional
DNS needs too fine grid resolution making a personal computer
incapable.

4.3. Temperature and heat transfer

The temperature in the SSD is of an increasing tendency with
time in the mean temporal variation rate being larger with the rise
of Re [Fig. 8]. The reason leading to this physical phenomenon is
due to the isoflux heating mode. This is because the larger the Rey-
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nolds number, the more important role is played by the source

term 4us
13Um

R
A

udA
u

� �
in the temperature Eq. (4).

To explore the temperature fluctuating characteristics, empiri-
cal mode decomposition (EMD) [58] is made for the historical train
of the x-averaged cross-sectional origin temperature at Re ¼ 105,
so that the intrinsic mode functions (IMF) can be obtained. The
properties of the IMF are: (a) in the whole train, the number of ex-
trema and the number of zero crossings must either equal or differ
at most by one; (b) at any points, the mean value of the envelope
defined by the local maxima and that defined by the minima
should be zero. In Fig. 9, Ciði ¼ 1;2; � � � ;7Þ, is the ith IMF, the lower
lever mode function has a higher frequency of intrinsic oscillation,
and R is the residue of the empirical decomposition. By observing
the curves of IMF in Fig. 9(a and b), it is possible to estimate
approximately the intrinsic oscillating frequency of the tempera-
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Fig. 6. The comparison of the quadrant-averaged mean secondary flows (a–c) with the
Reynolds number of 104, 105 and 106, respectively. Note that the contours in (a–c) are lab
�2, �0.5, 0.5, and 2.
ture. From the monotonically temporal varying residual curve gi-
ven in Fig. 9(c), it is possible to estimate the mean temporal
increasing rate of the x-averaged cross-sectional origin tempera-
ture which is called as signal for EMD. In comparison with the evo-
lution of the central point temperature at Re ¼ 105 labeled by
dashed curve in Fig. 8, it is seen that the signal for EMD has lower
temporal oscillating amplitudes, indicating that the x-averaging
has introduced a smoothing effect.

The rms of hþ along the wall-bisector is shown in Fig. 10. Com-
parison is made between the DNS in Ref. [32], and the data in Ref.
[62]. The rms curves of hþ is similar to the rms curves of urms given
in Fig. 4, merely qualitative agreement is observed. The numerical
reason is that the rms values are sensitive to the scheme of discret-
izing the convection terms in the governing equations, as found by
Ma et al. [26].

If the time mean temperature of the air in the domain is de-
noted by Tm;av , then the overall mean Nusselt number of the forced
heat convection in the SSD is defined by

Nuav ¼
13Ts

Tw � Tm;av

1
4

Z
C

@ �Hþ

@n
dC ð14Þ

where C is the boundary of the cross-section, and n is the corre-
sponding inner normal unit vector of C. Comparisons with the
experimental correlations [64,65] can be seen in Fig. 11. The maxi-
mum relative deviation is less than 10%, suggesting that the sub-
grid model is simpler and useful in accurate predicting the heat
transfer rate in the particular turbulent heat and fluid flow problem.
5. Conclusions

A sub-grid model in a simpler form is developed to represent
the small eddy effect on turbulent heat and fluid flows in a straight
duct at higher Reynolds numbers covering the range from 104 to
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106. By calibrating the friction factor with measured data, it is
found that the sub-grid viscosity measured by the product of the
bulk mean velocity and duct cross-section side length decreases
monotonically from 7:5� 10�6 to 3:16� 10�6, indicating at a mod-
erate Reynolds number of 104 the ratio of the sub-grid viscosity to
fluid kinematic viscosity is about 7.5%. This suggests the small
eddy effect is negligible at moderate Reynolds numbers and the
coarse-grid direct numerical simulation can give satisfactory re-
sults at the same fine grid resolution.

The quadrant-averaged mean secondary flow vortices distrib-
uted symmetrically to the duct diagonal bisectors contract to the
duct corners, while the instantaneous secondary vortices fulfill
the whole cross-section and have larger vorticity values as com-
pared to that of mean secondary vortices. With the increase of Rey-
nolds number, both kinds of vortices and the Taylor and
Kolmogorov micro-scales become smaller, the deviation of the



y+

R
oo

t m
ea

n 
sq

ua
re

 o
f

100 101 102 103 104 105
0

0.5

1

1.5

2

2.5

3

3.5

4

Isshiki
Hishida
Kasagi
Re/104=1
Re/104=5
Re/104=10
Re/104=100

θ+

Fig. 10. The comparison of the rms curve of temperature along the wall-bisector
with existing results. Note that the friction Reynolds number is 150 (based on the
channel half-width and wall shear velocity) in the fully spectral DNS of the plane
channel flow done by Kasagi et al. [32], and the data labeled by ‘Isshiki’ abstracted
indirectly from [32]. The friction Reynolds number in the work of Hishida et al. [62]
is 879.

Re

N
u av

104 105 106
0

200

400

600

800

1000

1200

1400

Sleicher and Rouse
Gnielinski
LES

Fig. 11. The comparison of overall mean Nusselt number with experiments. Note
that the correlation of Gnielinski was indirectly abstracted from Ref. [65].

Z. Zhu et al. / International Journal of Heat and Mass Transfer 53 (2010) 356–364 363
overall mean Nusselt number becomes larger, and the evolution of
temperature at the central point of the computational domain ap-
pears a larger temporal increasing rate, the central point tempera-
ture has a larger fluctuating amplitude in comparison with that of
the x-averaged cross-sectional origin temperature. The evolution of
the x-averaged cross-sectional origin temperature at the Reynolds
number of 105 has been analyzed by the empirical mode decompo-
sition (EMD) to explore the fluctuating characteristics. The largest
relative deviation of the overall mean Nusselt number from the
experimental data is found to be less than 10%. With the rise of
Reynolds number, the mean secondary vortex pairs move towards
the corners and have smaller size, while smaller size vortices also
occur in the instantaneous secondary flow.
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