Numerical study of turbulent heat and fluid flow in a straight square duct at higher Reynolds numbers

Zuojin Zhu¹, Hongxing Yang*, Tingyao Chen

1 Department of Building Services Engineering, The Hong Kong Polytechnic University, Kowloon, Hung Hom, Hong Kong, PR China

Abstract

This paper presents the large eddy simulation (LES) results of turbulent heat and fluid flows in a straight square duct (SSD) at higher Reynolds numbers ranged from 10⁴ to 10⁶, which are based on the bulk mean velocity and the duct cross-sectional side length. A sub-grid model is proposed, which assumes that the sub-grid stress and heat flux are, respectively, proportional to the temporal increments of the filtered strain rate and temperature gradient, with the proportional coefficient determined by calibrating the friction factor. The temperature was taken as passive due to the neglect of buoyancy effect. The Taylor and Kolmogorov scales in the SSD are predicted and the results show that the LES results are better than c-DNS results. The LES results can explain why the c-DNS is applicable to the problem at a moderate Re, and reveal that the largest relative deviation of the overall mean Nusselt number is less than 10% as compared with existing experimental correlations. With the rise of Reynolds number, the mean secondary vortex pairs move towards the corners and have smaller size, while smaller vortices also occur in the instantaneous secondary flow. Empirical mode decomposition (EMD) was carried out to analyze the fluctuation of the x-averaged cross-sectional origin temperature at \(\text{Re} = 10^4 \).

Article history:
Received 1 April 2009
Received in revised form 30 August 2009
Accepted 30 August 2009
Available online 8 October 2009

Keywords:
Turbulence in a straight square duct
Heat and fluid flows
Non-standard analysis of turbulence
Passive scalar

1. Introduction

The problem of turbulent heat and fluid flows in a straight square duct (SSD) is fundamental in thermal science and fluid mechanics. The turbulence in the SSD has a remarkable change in flow structure due to the existence of the so-called Prandtl’s second kind secondary flows [1]. The secondary flow has a significant effect on the transport of heat and momentum as uncovered by the recent large eddy simulation (LES) [2]. Extensive studies have been pursued. Examples are the work based on the algebraic stress model of turbulence [3], those emphasizing the effect of rib roughened wall [4–7], the effect of a square bar detached from the wall [8], the effect of periodic array of cubic pin–fins in a channel [9], and the effect of inside tubes with helical fins [10].

The coarse-grid direct numerical simulation (c-DNS) [11] at a bulk mean Reynolds number of 10⁴ has presented some primary characteristics of forced turbulent heat convection which is consistent with experimental observations, indicating that the c-DNS is applicable at the moderate Reynolds number and grid resolution used. However, since with the increase of Reynolds number the sub-grid eddy effect becomes more and more significant on the solution of large-scale turbulence, the c-DNS produces larger discrepancy in numerical results as compared with existing measured data.

A brief literature review is given in the previous work [11]. More developments in the study of turbulence will be introduced below. From the Navier–Stokes equations, a simple nonlinear dynamical system is developed for the delta-vee evolution, which shows the ubiquitous non-Gaussian tails in turbulence have their origin in the inherent self-amplification of the delta-vee [13]. One-dimensional Burgers turbulence driven by a white noise in time random forces has statistical properties surprisingly similar to real-life three-dimensional (3D) turbulence: Kolmogorov energy spectrum, intermittency and the scaling properties of the dissipation rate fluctuations, and bifractality of probability density function of velocity difference [14,15]. However, whether this similarity can ensure a well repetition of real-life turbulence related to fluid coherent motions [16–18] needs to be verified.

The \(\alpha \)-NS model [19] has attracted some attention in recent years [20,21]. The non-standard analysis of turbulence [22] allows the use of c-DNS to obtain relatively accurate results at moderate Reynolds numbers [23–34]. The earlier DNS [23] indicated that turbulent statistics along the wall-bisectors agrees well with measured channel data of plane channel flow [35–38], despite the influence of the sidewalls in the former flow. For higher Reynolds number turbulence, it seems that large eddy simulation is better, and evidence can be found in previous works [39–47].

* Corresponding author. Tel.: +86 52 27665863; fax: +86 52 27746146.
E-mail addresses: behxyang@polyu.edu.hk (H. Yang), betychen@polyu.edu.hk (T. Chen).
URL: http://staff.ustc.edu.cn/~zuojin (Z. Zhu).
1 Multiphase Reactive Flow Division, Department of Thermal Science and Energy Engineering, USTC, Hefei 230026, PR China.
This paper presents the numerical results of turbulent large-scale motion based heat and fluid flows in a SSD at various Reynolds numbers in the range from 10^4 to 10^6 at a given grid resolution with a grid number of about 1.2×10^9. The sub-grid stress and heat flux are assumed to be proportional to the temporal increments of the strain rate and temperature gradient, and the filtering is based on the so-called monad average [22]. The model coefficient is sought by calibrating the friction factor. The present sub-grid model has an advantage of elucidating why the c-DNS of turbulence at moderate Reynolds number is applicable. The temperature is taken as passive so that the buoyancy effect can be completely neglected. It is assumed that the flow Mach number is lower and the air flow can be considered as incompressible; the temperature dependence of the thermal–physical properties of air can be ignored. The temperature equation proposed in the DNS work [32] is used for the case of isoflux heating on the walls. The governing equations are solved numerically by a projection method based on a finite difference scheme [11], which is improved from the numerical work of wake flow simulation [12]. The Taylor and Kolmogorov micro-scales of turbulence in the SSD are found numerically, indicating that the grid resolution required for the traditional means DNS should be very severe.

2. Governing equations

At higher Reynolds numbers, sub-grid scale effect on large-scale motions should be carefully accounted. Additional assumptions are required in the non-standard analysis of turbulence [22]. In previous LES works [39–46], sub-grid stress is usually assumed to be the product of the eddy viscosity and the locally filtered strain rate, which is merely an analogy to the constitutive relationship in Newtonian fluid mechanics. The sub-grid model used in LES has not been found numerically, indicating that the grid resolution required in the non-standard analysis of turbulence [22]. In previous studies [39, 48], the sub-grid viscosity χ^2 is not a constant in the presence of wall effects. Therefore, we assume that χ^2 decays with the wall coordinate y^+ in a way of $[1 - \exp(-y^+ / 25)]^2$, where $y^+ = u^+ / \nu$ denotes the normal distance to the wall, with u^+ denoting the mean friction velocity and ν representing the kinematic viscosity of fluid.

It is noted that the sub-grid model is derived approximately from the χ^2-introduced accurate projection method in the form of Eq. (8). In the approximation, the term $[\nabla \cdot (\chi^2 \nabla \mathbf{u})]^{1/2}$ in the left-hand side of Eq. (8) was replaced by $[\nabla \cdot (\chi^2 \nabla \mathbf{u})]^2$, rather than directly omitted as in the traditional methods from which the sub-grid stress should be proportional to the filtered strain rate.

Using the discretized form of temperature Eq. (11) and a similar approximation, the sub-grid heat flux can be derived to be proportional to the temporal increment of filtered temperature gradient, $\frac{\partial T}{\partial t}$, we have

$$-\overline{u_i \partial T} = \frac{\chi^2 \Delta t}{2Pr} \left[\frac{\partial^2 T}{\partial x_j^2} \right] \frac{\partial \phi}{\partial x_j}$$

(2)

where ϕ and ∂ are, respectively, the monad averaged and fluctuating temperatures. The factor $1/2$ is used to maintain a consistency in a way of $2Pr$, the Taylor scale in the unit of u_{ref}. The sub-grid model proposed in the DNS work [32] is used for synchronizing the computation, i.e., it allows the sub-grid model based on monad filtering is expected to have the advantage of elucidating why the c-DNS is possibly successful in duct flow study at a moderate Re around 10^4. Evidence will be given in this LES work.

Let the origin of the Cartesian coordinate system set at the central point of the computational domain, and the coordinates in the streamwise, transverse and spanwise directions be $x(x_1)$, $y(x_2)$ and $z(x_3)$, respectively. We further assume that the air flow in the SSD is heated under an isoflux condition, implying that the time-averaged wall heat flux does not change in the x-direction. This heating mode is equivalent to an assumption that the time-averaged wall temperature T_w should increase linearly in x-direction, due to the global heat balance for a fully developed thermal field. Therefore, the bulk mean temperature T_m should also increase linearly in the x-direction, i.e., $\partial T_m / \partial x = \partial T_w / \partial x = \text{const.}$

Let f_3T_m denote the temperature scale, the dimensionless temperature is defined as:

$$\theta^+ = \left(\frac{T_m}{f_3} - T \right) / (f_3T_m) \equiv \theta^+ / 13$$

(3)

where T_m is the friction temperature defined by $Q_r/(\rho C_p \mu)$. The factor 13 is used for synchronizing the computation, i.e., it allows the solution of temperature by using the same time step used in the velocity calculation. Using bulk mean velocity U_m and the duct
cross-sectional side length H as the velocity and length scales in variable normalization, and inserting the sub-grid heat flux expressed by Eq. (2) into energy conservation relation, we obtain the dimensionless temperature Θ^+ equation as follows:

$$\Theta^+_t + u \cdot \nabla \Theta^+ - \frac{4u_t}{13U_m} \frac{dA}{dA} \frac{u}{\Theta^+} = \frac{1}{Re Pr} \nabla^2 \Theta^+ + \nabla \cdot \left[\frac{k^2}{Pr} \nabla (\Theta^+ \Delta t / 2) \right]$$

where x^2 is normalized by $H u_m$, Δt is normalized by H / U_m, $dA = dy dz$, is the element of cross-sectional area, u is the normalized streamwise velocity component, and u_t is the mean friction velocity. The Reynolds number Re is defined as $H u_m / v$, the Prandtl number of air $Pr = v / \nu$ is 0.71. The last term on the left-hand side of the Eq. (4) corresponds to $-u_t \partial (T_m^+ / \partial x_t) / 13$, as stated by Kasagi et al. [32] in case of turbulent channel flow.

With the sub-grid stress model (1), the governing equations of the turbulent flows can be written as

$$\nabla \cdot \mathbf{u} = 0$$

$$\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{u} + \nabla \cdot \left[\frac{x^2}{n} \nabla \left(\frac{u^+}{2} \right) \right] + \Pi \delta_{it}$$

where δ_{it} is the Kronecker delta tensor, Π represents the mean pressure gradient in the x-direction. The solution can be adjusted dynamically to maintain the constant mass flux in the SSD flow [49]. The initial flow field is assumed to be laminar, and perturbed by an approach incorporating the initial acceleration effect. The streamwise periodicity of pressure potential is appropriately considered in the AFI iteration. The temperature Eq. (4) is solved by time marching. The implicit second-order Crank–Nicholson for the right-hand side diffusion terms, and fourth-order upwind scheme for the left-hand side convection terms are used in spatial discretization.

3. Numerical method

The temperature and velocity governing Eqs. (4)–(6) have included the sub-grid model reflecting the sub-grid eddy effect. Since the model coefficient x^2 at $y^+ \to \infty$ stands for the isotropic small eddy viscosity, it is a constant dependent on the Reynolds number. By some proper changes, the existing numerical methods in DNS, such as those described in Refs. [10,50–54], are still applicable.

The solutions of the Eqs. (4)–(6) are sought by the accurate projection algorithm Pmll [55] in a non-uniform staggered grid system. Due to the further use of the sub-grid model, the solution method is given below.

Let the intermediate velocity vector, the pressure potential and the time level be denoted by \mathbf{u}, ϕ and n, respectively. Assume $H = (\mathbf{u} \cdot \nabla) \mathbf{u}$, then let

$$\mathbf{u}^{n+1} = \mathbf{u} - \Delta t \nabla \phi$$

we can calculate \mathbf{u} by

$$\mathbf{u} - \mathbf{u}^0 = \frac{H}{\Delta t} + \nabla \cdot \left[(x^2 \nabla u) \right]^{n+1/2}$$

$$= \nabla \cdot \left\{ \left[\frac{1}{Re} + x^2 \right] \nabla \left[\mathbf{u}^t + \frac{1}{2} (\mathbf{u} - \mathbf{u}^0) \right] \right\}$$

and calculate pressure p by

$$p^{n+1/2} = \left\{ 1 + \Delta t \nabla \cdot \left[\left[\frac{1}{Re} + x^2 \right] \nabla / 2 \right] \right\} \phi$$

where the pressure potential ϕ must satisfy the Poisson’s equation

$$\nabla^2 \phi = \nabla \cdot \mathbf{u} / \Delta t$$

while the temperature Θ^{n+1} can be calculated by

$$\Theta^{n+1} = \Theta^n + \frac{H_4}{\Delta t} + \nabla \cdot \left\{ \left[\frac{k^2}{Pr} \nabla (\Theta^+ + \frac{1}{2} (\Theta^{n+1} - \Theta^n)) \right]^{n+1/2} \right\}$$

where $H_4 = [\mathbf{u} \cdot \nabla \Theta^+ - \frac{4u_t}{13U_m} \frac{dA}{dA}] \frac{u}{\Theta^+}$, and the terms at the level of $(n + 1/2)$ are calculated explicitly using a second-order Euler predict-correction scheme in temporal, where spatial difference is evaluated by using the scheme similar to the previously used [11]. The pressure potential Poisson’s equation is solved by the approximate factorization one (AF1) method [56]. The streamwise periodicity of pressure potential is appropriately considered in the AFI iteration. The temperature Eq. (4) is solved by time marching. The implicit second-order Crank–Nicholson for the right-hand side diffusion terms, and fourth-order upwind scheme for the left-hand side convection terms are used in spatial discretization.

4. Results and discussion

The turbulent heat and fluid flows in a SSD at six bulk Reynolds numbers ($10^5, 5 \times 10^5, 10^5, 2 \times 10^5, 8 \times 10^5, 10^5$) were simulated numerically, in which the turbulent Prandtl number of temperature σ_T was set as 0.9. The simulation was conducted in the staggered grid system, where dense grids were distributed in the near wall region, with the grid distance regulated by a power law. Nearly uniform streamwise grid had the grid number of 112, that means the 15 x-directional meshes near the inlet section were amplified gradually by a factor of 1/0.9, while the 15 x-directional meshes near the exit section were shortened gradually by a factor of 0.9, the meshes in the central region were uniform. The minimum and maximum mesh lengths in the x-direction were, respectively, 0.01266 and 0.06149. Non-uniform spanwise and transverse grids had the same grid number of 101, there were 25 non-uniform meshes near each duct wall, the mesh lengths from the wall to the central region were amplified gradually by a factor of 1/0.85. Therefore, the minimum mesh length for the nearest wall mesh was 2.8×10^{-4}, while the maximum mesh length for the middle region meshes was 0.01636.

The normalized streamwise length of the computational domain was equal to 6.41, since the previous DNS study [24] has shown that the self-correlation coefficient of the streamwise velocity component is close to zero when the distance from the origin is equal to 3.2. The criterion for pressure potential iteration was chosen so that the relative error defined previously [57] should be less than 3×10^{-8}. The large eddy simulation (LES) work focuses to:

- Explore the fluid flow characteristics by calculating the turbulence statistics, the mean and secondary flows and Taylor and Kolmogorov micro-scales.
- Explore the dependence of heat and fluid flow characteristics on the Reynolds number, and reasons why the DNS and c-DNS of turbulent flows can give satisfactory results at moderate Reynolds numbers.
- Predict the Nusselt numbers of the forced turbulent heat convection in a SSD at higher Reynolds numbers, and investigate the heat transfer characteristics by illustrating the temperature fluctuation intensity and intrinsic mode functions obtained by empirical mode decomposition [58].

4.1. Turbulence statistics

Based on the average in time and streamwise direction, statistical values of turbulent variables along the wall-bisector were evaluated. The initial field was obtained by reading the unformatted
temporary data file saved at the time of \(t = 200 \) for the Reynolds number of \(10^4 \). To remove the effect of Reynolds number change, the numerical results in the time range from 200 to 300 were not used for the statistical analysis of turbulence. Such a time range of 100 equals 15.6 turnover times, and is sufficiently long to make the simulation results after the time of \(t = 300 \) become statistically steady. Hence, the time range used in the average was from \(t = 300 \) to 400, in which a data sequence with five thousand records was used in the analysis of turbulence statistics. The sub-grid viscosity \(\alpha^2 \) at \(y^+ \to \infty \) and mean friction factor as functions of Re were supplementarily shown in Fig. 1(a and b) and Tables 1 and 2. The sub-grid viscosity \(\alpha^2 \) at \(y^+ \to \infty \) was obtained by calibrating the friction factor with the empirical correlation of Swamee and Jain [59], which can also be found in the book of Roberson and Crowe [60].

At a higher Reynolds number, small eddies play a more important role in turbulent diffusion of mass and momentum. As shown in Table 1, the ratio of sub-grid viscosity to fluid kinematic viscosity denoted by \(\alpha^2Re \) at \(y^+ \to \infty \) becomes larger, while at a moderate Re, such as \(Re = 10^4 \), the viscosity ratio is as small as 7.5%, elucidating why coarse-grid DNS can give satisfactory results in turbulence exploration. Using the ratio, it can also explain why the c-DNS has lost its potential in simulating the SSD flow at higher Reynolds numbers, since as soon as the mean friction factor was elucidating why coarse-grid DNS can give satisfactory results in turbulence exploration, the Reynolds number change, the numerical results in the time range from 200 to 300 were not used for the statistical analysis of turbulence. Such a time range of 100 equals 15.6 turnover times, and is sufficiently long to make the simulation results after the time of \(t = 300 \) become statistically steady. Hence, the time range used in the average was from \(t = 300 \) to 400, in which a data sequence with five thousand records was used in the analysis of turbulence statistics. The sub-grid viscosity \(\alpha^2 \) at \(y^+ \to \infty \) and mean friction factor as functions of Re were supplementarily shown in Fig. 1(a and b) and Tables 1 and 2. The sub-grid viscosity \(\alpha^2 \) at \(y^+ \to \infty \) was obtained by calibrating the friction factor with the empirical correlation of Swamee and Jain [59], which can also be found in the book of Roberson and Crowe [60].

The mean profiles of velocity and temperature based on the \(\alpha \)-NS model and experimental results [36,63], as shown in Fig. 2(a and b). Along the wall-bisector, the velocity profiles at various Reynolds numbers are in good agreement with the published results, showing that the sub-grid model has an application potential. The mean temperature in almost the whole buffer layer of \(y^+ \) is slightly lower when the Reynolds number increases from \(10^4 \) to \(10^5 \). For the case of \(Re = 10^5 \), the nearest grid distance to the wall is around \(y^+ = 10 \), and the temperature profile has slightly shifted upper.

The velocity bands are defined by \([u] = \max(u) - \min(u) \), \([v] = \max(v) - \min(v) \), \([w] = \max(w) - \min(w) \), here \(u, v, w \) represent the \(\alpha \)-averaged velocities, and the mid point of the band is adjusted so that it has the time-averaged value. The velocity bands are plotted as functions of \(y^+ \) at four Reynolds numbers, as seen in Fig. 3. The turbulent flow in the SSD at higher Reynolds numbers does have intensive velocity fluctuations, suggesting that the flow is fulfilled by the coherent structures composed of the \(\Omega \) type vortices and vortical tubes and rings [17].

Table 1

<table>
<thead>
<tr>
<th>Re/10^4</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha^2)</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.74</td>
<td>0.368</td>
<td>0.316</td>
</tr>
<tr>
<td>(\alpha^2/Re)</td>
<td>0.075</td>
<td>0.375</td>
<td>0.75</td>
<td>1.48</td>
<td>2.94</td>
<td>3.16</td>
</tr>
</tbody>
</table>

Table 2

The \(10^2f \) as a function Re.

<table>
<thead>
<tr>
<th>Re/10^4</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^2f_{c-DNS}</td>
<td>3.00</td>
<td>1.88</td>
<td>1.40</td>
<td>1.00</td>
<td>0.465</td>
<td>0.41</td>
</tr>
<tr>
<td>10^2f_{LES}</td>
<td>3.00</td>
<td>2.04</td>
<td>1.69</td>
<td>1.51</td>
<td>1.21</td>
<td>1.76</td>
</tr>
<tr>
<td>10^2f_{exp}</td>
<td>3.10</td>
<td>2.08</td>
<td>1.78</td>
<td>1.55</td>
<td>1.21</td>
<td>1.16</td>
</tr>
</tbody>
</table>

Based on c-DNS when \(y^+ = 0 \).

Based on LES when values of \(y^+ > 5 \).

![Fig. 1](image.png)

Fig. 1. The sub-grid viscosity at \(y^+ \to \infty \) (a) and the friction factor (b) plotted as functions of bulk Reynolds number. Note that the value of \(\alpha^2 \) is determined by calibrating the friction factor with the explicit expression of Swamee and Jain [59]: \(f = 0.25/(\log(\nu_e/(3.7H)) + 5.74/\text{Re}^{0.8})^1 \), which is introduced in the book of Roberson and Crowe [60], where the equivalent sand roughness \(k_s \) was set as zero in the calibration.
secondary vortices have finer scales, with more occurring in the near wall region.

The quadrant average based distributions of the Taylor and Kolmogorov micro-scales are shown by the contours of \(\log(\bar{\lambda}_u) \) and \(\log(\bar{\eta}_u) \) at three Reynolds numbers, as seen in Fig. 7. The Taylor and Kolmogorov micro-scales \(\bar{\lambda}_u \) are predicted by using [see in Ref. [61]]

\[
\bar{\lambda}_u^2 = 10 v k_u/\epsilon, \quad \bar{\eta}_u^2 \equiv (v^3/\epsilon)^{1/2} = \bar{\lambda}_u^2 [v(\epsilon/v)^{1/2}/(10 k_u)] \tag{12}
\]

where \(k_u = \overline{u'^2} \) is the time and \(x \)-averaged turbulent kinetic energy, and \(\epsilon \) is the dissipation rate of \(k_u \) given by

\[
\epsilon = 2 v \overline{\eta_u^2}, \quad \overline{\eta_u} = (\overline{\partial u'_1/\partial x_1} + \overline{\partial u'_j/\partial x_j})/2 \tag{13}
\]

The Taylor scale is artificially defined, and does not represent any group of eddy sizes. The Kolmogorov scale is the smallest eddy scale, but far larger than the mean free path [61]. It is seen that the Kolmogorov scale decreases with the increase of \(Re \). It is smaller in the near wall region, and a little bit larger in the flow core. The spatial derivatives of the scale in the flow core is relatively low at a higher Reynolds number. For instance, at \(Re = 10^5 \), \(\log(\bar{\eta}_u) \) in the flow core region is about \(-3.03 \pm 0.03\). The values of \(\eta_u \) show that the grid resolution used is largely incompatible with the turbulent flow, since the requirement for a tradition DNS of turbulent heat and fluid flows in the SSD at a Reynolds number of about \(10^5 \) is that the grid number in \(y \)- or \(z \)-direction should be as large as \(10^5 \). This explains why the calculated Reynolds stress peak value (\(-0.4\)) is far lower than around 0.8, which could be postulated from the measured data given at a relative low \(Re \) [Fig. 5]. The illustration of the micro-scale distribution shows that for higher \(Re \) turbulent flows LES is better, it can present quantitatively satisfied mean profiles and qualitatively consistency of the turbulence intensities, the Reynolds stress and temperature variance. However, traditional DNS needs too fine grid resolution making a personal computer incapable.

4.3 Temperature and heat transfer

The temperature in the SSD is of an increasing tendency with time in the mean temporal variation rate being larger with the rise of \(Re \) [Fig. 8]. The reason leading to this physical phenomenon is due to the isoflux heating mode. This is because the larger the Rey-
nolds number, the more important role is played by the source term \[\frac{\partial u}{\partial y} \] in the temperature Eq. (4).

To explore the temperature fluctuating characteristics, empirical mode decomposition (EMD) [58] is made for the historical train of the \(\bar{u} \)-averaged cross-sectional origin temperature at \(\text{Re} = 10^5 \), so that the intrinsic mode functions (IMF) can be obtained. The properties of the IMF are: (a) in the whole train, the number of extrema and the number of zero crossings must either equal or differ at most by one; (b) at any points, the mean value of the envelope defined by the local maxima and that defined by the minima should be zero. In Fig. 9, \(C_i (i = 1, 2, \ldots, 7) \), is the \(i \)-th IMF, the lower lever mode function has a higher frequency of intrinsic oscillation, and \(R \) is the residue of the empirical decomposition. By observing the curves of IMF in Fig. 9(a and b), it is possible to estimate approximately the intrinsic oscillating frequency of the temperature. From the monotonically temporal varying residual curve given in Fig. 9(c), it is possible to estimate the mean temporal increasing rate of the \(\bar{u} \)-averaged cross-sectional origin temperature which is called as signal for EMD. In comparison with the evolution of the central point temperature at \(\text{Re} = 10^5 \) labeled by dashed curve in Fig. 8, it is seen that the signal for EMD has lower temporal oscillating amplitudes, indicating that the \(\bar{u} \)-averaging has introduced a smoothing effect.

The rms of \(\bar{u} \) along the wall-bisector is shown in Fig. 10. Comparison is made between the DNS in Ref. [32], and the data in Ref. [62]. The rms curves of \(\bar{u} \) is similar to the rms curves of \(u_{\text{rms}} \) given in Fig. 4, merely qualitative agreement is observed. The numerical reason is that the rms values are sensitive to the scheme of discretizing the convection terms in the governing equations, as found by Ma et al. [26].

If the time mean temperature of the air in the domain is denoted by \(T_{\text{m,av}} \), then the overall mean Nusselt number of the forced convection in the SSD is defined by

\[
\overline{Nu_{av}} = \frac{1374}{F - T_{m,av}} \frac{1}{4} \int_{\Gamma} \frac{\partial \theta^+}{\partial n} d\Gamma
\]

where \(\Gamma \) is the boundary of the cross-section, and \(n \) is the corresponding inner normal unit vector of \(\Gamma \). Comparisons with the experimental correlations [64,65] can be seen in Fig. 11. The maximum relative deviation is less than 10%, suggesting that the subgrid model is simpler and useful in accurate predicting the heat transfer rate in the particular turbulent heat and fluid flow problem.

5. Conclusions

A sub-grid model in a simpler form is developed to represent the small eddy effect on turbulent heat and fluid flows in a straight duct at higher Reynolds numbers covering the range from \(10^4 \) to
By calibrating the friction factor with measured data, it is found that the sub-grid viscosity measured by the product of the bulk mean velocity and duct cross-section side length decreases monotonically from 7.5×10^{-6} to 3.16×10^{-6}, indicating at a moderate Reynolds number of 10^4 the ratio of the sub-grid viscosity to fluid kinematic viscosity is about 7.5%. This suggests the small eddy effect is negligible at moderate Reynolds numbers and the coarse-grid direct numerical simulation can give satisfactory results at the same fine grid resolution.

The quadrant-averaged mean secondary flow vortices distribute symmetrically to the duct diagonal bisectors contract to the duct corners, while the instantaneous secondary vortices fulfill the whole cross-section and have larger vorticity values as compared to that of mean secondary vortices. With the increase of Reynolds number, both kinds of vortices and the Taylor and Kolmogorov micro-scales become smaller, the deviation of the
overall mean Nusselt number becomes larger, and the evolution of temperature at the central point of the computational domain appears a larger temporal increasing rate, the central point temperature has a larger fluctuating amplitude in comparison with that of the x-averaged cross-sectional origin temperature. The evolution of the x-averaged cross-sectional origin temperature at the Reynolds number of 10^5 has been analyzed by the empirical mode decomposition (EMD) to explore the fluctuating characteristics. The largest relative deviation of the overall mean Nusselt number from the experimental data is found to be less than 10%. With the rise of Reynolds number, the mean secondary vortex pairs move towards the corners and have smaller size, while smaller size vortices also occur in the instantaneous secondary flow.

Acknowledgments

This work was funded by the donation from the Sun Hong Kai Properties Group. We are grateful to Prof. R.M.C. So for valuable comments, to the support of S.L. Xu, Y.Z. Liu, and NSFC (90815030).

References
