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ABSTRACT: A multiple parameter model to describe the Now
Newtonian properties of fluid filtration in porous media is
presented with regard to the pressure gradient expression in terms
of the velocity of filtration, where the multiple parameters should
be determined by measurements. Based on such a model, an
analysis was furnished to deduce the formula for the rate of
production of a oil well, and the governing equations for single
phase Nor-Newtonian fluid fritration. In order to examine the
effects of model parameters. the governing equations were
with  the
decomposition ZG method. It & found that, for constant rate of
production

numerically  solved method of  cross-diagonal
the power index n of the model influences the
pressure distribution considerably, particularly in the vicinity of a
single well. The w elt bore pressure of Leibenzonian fluid is lower
than that of the powerlaw fluid in the case of the same

parameter B and the power index n = 0. 5.
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NOMENCLATURE
A Empirical coefficient, kg/ (sm)
B Empirical coefficient, kgs" */m
C and C; Integral constant
C, Total compressibility, 1/Pa
Cp Compressibility of fluid, 1/Pa
Cr Compressibility of rock, 1/Pa
g The gravitational acceleration, m/s’
h effective thickness, m
H Consistency of power-law fluid, kgs"™ */m
k Absolute permeability, m?
n Power index
P Pressure, Pa
PolInitial pressure, Pa
P, Welkbore pressure, Pa
P. O1il discharge Pressure, Pa
g Rate of mass production, kg/s
r Ratial distance, coordinate, m

ro Welkbore radius, m

re Oil discharge radius, m

U Exponential function of pressure

w M agnitude of velocity vector of filtration, m/s

w max M aximum velocity of filtration, m/ s

w Velocity vector of filtration, m/s

x Vector of a position in space, m

—> o .

x 0 Vector of a position of a well space, m

z Depth of the porous medium from the ground,
m

zo Reference depth, m

GREEK SYMBOLS
PFluid density, kg/m’
o Initial fluid density, kg/m3
¢®  Porosity of the rock
@ dnitial porosity of rock
¢ Potential function of filtration, m
¢ Welkbore flow potential, m
¢ Discharge flow potential, m
Hyrr Effective viscosity, kg/ (sm)
V¢ Potential gradient

SUBSCRIPTS
0 Initial
e Discharge
eff Effective
i Grid node number
t T otal
w Weltbore

1. INTRODUCTION

Available Nom Newtonian fluid models used to
study the
filtration in porous media are required for the recovery

performance of NonNewtonian fluid

of subsurface petroleum reservoir. The performance of
filtration is mainly determined by the relation of the
filtration velocity and the pressure gradient, which was

* The work was supported by the project of General Corporation of Petroleum Industry of China and the N ational Natural Science

Fundation of China with Grant (,No. 19872062).
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confirmed to be nonlinear for NomNewtonian fluid
flow in a porous medium by a large amount of
experiments. It nodaubtedly deviates from the well
known Darcy’ s curve of filiration of a normal
Newtonian fluid. However, in many previous papers,
the nonlinear relationship between velocity and
pressure gradient of NomNewtonian fluid has been
linearly approximated to result in the simplifed fluid
models, for example, the Bingham fluid model” IOJ,
fluid model ™. This kind of
simplification truly introduces deviations under the
For Non
Newtonian fluid, a variety of rheological models were
summarized by Bird et al'*'. | (1969) Recenty, Ma
and Ruth performed a physical explanation of Nom
Darcy effects, although a direct prediction of the fluid

motion in a porous medium has not been furnished

segmental linear

circumstance of small pressure gradient.

further in the reported workl "',

Notably, Gogal’[y[ 4 found by experiments that
effective viscosity of pseudoplastic fluid flow in a core
depends upon the average shear rate, which is a single-
valued function of a velocity in a given porous medium.
T he experimental results have been utilized as a bridge
in the theoretical work of Tkoku et al'®. , and Wl s
in which the effects of powerlaw fluid behavior of
filkation and displacement have been investigated
despite of its obvious

analytically.  However,

advantages in the description under the condition of
is  hardly

appropriate to large pressure gradient. Consequently,

small velocity. the powerlaw model
Gurbanov et al'™., completed their analysis with
Leibenzonian fluid model, and their solution indicated
that empirical coefficients have a profound influence on
the mass rate of a production well for heavy oil.

In this paper, a multiple parameter fluid model is
proposed for Non-New tonian fluid filtration, which is
more complicated, but is anticipated to have wider
feasibility of engineering application. The model is
used to deduce the governing equations of fluid flow in
a porous medium which are numerically solved with a
cross-diagonal decomposition ZG"* method to find the
It is found that

the expression for the mass rate of production of a

effects of Non-Newtonian behavior.

single oil well in steady filtration is really different

[5

from Dupui’ s expression based on Darcy’ s law.

2. MULTIPLE PARAMETER FLUID MODEL

Consider the filtration of NomNewtonian fluid
flow in a porous medium. T he results of experiments
showed that the nor-linear of filtration in porous media
just strongly appeares in the case of comparatively
small pressure gradient. Subsequently, experimental
data indicates that if the velocity in porous media is
larger, the relationship between the pressure gradient
and the velocity tends to be linear, thus, instead of
the NomNewtonian fluid flow in a

the

Darcy’ s law,

porous medium is considered to adherence

following law:

B

Pim V= (s HOEI) (1)

where P, g, 2z, w, w are fluid density, gravitational
acceleration, vertical depth from the point considered

velocity vector and its
and V is the Hamiltonian

to the ground surface,
magnitude respectively,

operator. Eq. (1) defines a multiple parameter fluid.
As shown in Fig. 1, the filtration curve in the
( © VP/10°) plane is closely related to the parameters
selected. Thus by determining the multiple parameter
in laboratory. The performance of Nom Newtonian
fluid filtration can be understood more accurately. In
addition, % is the permeability of the porous medium,
A, B and n are three empirical parameters to be
determined by experiments. From Eq. (1). It is seen
the

model reduces to the well known formulation of Darcy,
defines the fluid to be Newtonian type.

the

that as long as the parameter B = 0, A = H,

Loe,
1

5
multiple parameter model keeps the same form as
presented by Leibenzon (see Ref. [ 5]). Which is
suitable for nomNewtonian fluid motion In porous
media, and the values of A and B can be found in Ref.
[1]. But in Ref. [ 5] there is just a table giving values
of A and B for some kinds of NonNewtonian fluids

Subsequently, if the third parameter n =

under normal conditions. In Eq. (1), the unit of A
and B are respectively kg/ (sm) and kgs™ */ m. As A
= 0, for powerlaw fluid, it is seen that

ne 1
B =k 2 Wy (2)
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Table | Measured parameters for leibenzonian fluid’
k Temperature A B
Oil of V ariation range of
lubrication velocity gradient/s™ '
m/d /G Ikeges™ "om” /kgrsm™ !
28 0. 0076 0. 00974 0.020.79
n=0.5 12

35.6 0.00079 0. 00394 0.060.5

“Cited from Ref.[ 5]

.
j
0.75¢ §
ES é ,
i
0.5 i for A =0
T .Ooin=0,2,o.5,0.8
0.25 ,' for A = 5kg *+sm~’
i/ ®L®y=0.205,0.8
00 10 20 30 40

Vp /Pa+m™

Fig. 1 The relation between pressure gradient and velocity of
filtration, for the case of B = 20kgs"™ zm, where P &
in the unit of 10° Pa, and w with its maximum value
w max

w here Hyy is the effective viscosity, and from the work

of Savins' 7, it is defined as

il 3n e
Byp = 159+ =) "(150k® )72 (3)

in which H represents the consistency of pow erlaw
fluid and ¢

parameter n to be measured is rehabilitated to the

is the porous medium. Obviously, the

powetlaw index, the powerlaw model is just a
simplified model of the present one. The combination

of relations (2) and ( 3) gives

_H

B=Tior 2)nis00) (4)

which is only applicable to powerlaw fluid filtration.
For Leibenzonian fluid, the measured results for the

temperature and permeability in experiments. cited
from Ref. [ 5], are indicated in Table 1, where the

variation range of velocity gradient of filteration is

shown as well. In the next section, attention is
focused on deducing the expression of production rate

of single well.

3.  RATE OF PRODUCTION

Consider one-dimensional radial flow under steady
condition. Assume that the rock non-deformed, thus
the continuity equation can be written as

Tl (s)

ve(w) =

By intergration, one gets

rw = C (6)
Since the mass rate ¢, of a productive oill well with
the effective thicknessh of the porous medium could be
expressed by

qg= 2Thrw (7)

by comparing (7) with (6), i is found that

Cz_q_wzg

2T r (8)

On the other hand, we define a flow potential ¢

which satisfies the follow ing ex pression:

vp= YL_

k

Vz

(9)

which means the potential
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b= bg P?}TP_ (z- zo) (10)

m Wthh ¢Q
Py.

is the reference flow potential for p =
and z = zo.

P= Pet v (11)

then by some algebraic operations, yields

= L4 Py
¢= bg (2 - zo) + W (12)

Substituting (9) into (1) and integrating under the
assumption of incompressible fluid, one could obtain

the following expression:

17 n
= Ci+ ()" [ Clnr + J:(J‘) 1_ n] (13)
where C1 is a constant of integration.
T he boundary conditions are
b= P forr= r,
b= ddor r= re (14)

where ry,, 1. are the well radius and oil discharge

radius respectively, while ¢ ,, ¢ .are respectively the
weltbore flow potential and discharge flow potential.
T he substitution of (14) into equation (13) gives

1= %(4% bt %(%)_]'

Fn
A B C nTw *+ Te
{k_Cln( rw, re) + ﬁ(ﬁ) 1_—’1} (15)

and

() (P

{B(ren_ rlll/n}. Cll
(E)""(1- n)

the application of Eq. (8) yields the relation of flow

b )= 2—0111(:7‘?) +

(16)

potential difference and the rate of oil production

() (Pm b)=

ZThk()

()| B ”1” ") (17)
(J_) 1+ n _

from which the rate of production can be evaluated

with the New tor- Raphson iteration when the remained

variables are given. It is also applicable to the problems

of multiphase flow and displacement in porous media,

provided that some considerations of effects associated

with relative permeability and saturation are included.

4. GOVERNING EQUATION OF FILTRATION
the

flow of the Nor New tonian fluid in a porous

Consider the problem of single phase
transient.
medium. C, is assumed to be the compressibilty of the

rock, thus, the porosity could be written as

@ = @ PPy

(18)
where ®gs the initial porosity. In order to linearize the
time dependent term in the equation of filtration, we
assume that there is a new variable U , defined by the
exponential function

U= ol CHCI(P-Py _ C(P-Py

(19)

Applying Eq. (12) yields the relation between U
and ¢

1
J1= (PogCo)( 9+ z- ®- z0)

(20)

Since the governing equation of filtration has the
following form:

o( W)
ot

== Ve (Qu)+ f(t. X %0) (21)

Appling Egs. (1) and ( 20).
following governing equation with the variables U and

One can obtain the

w

U _ 1. U 'vU- U™ vZ)
ot ~ C(A+ B(w/ [k)™")

. -1 (22)
pog[— U V7 + UTVlf]z_

wheref (1,

which,, ;with use of Dirac function,

X, X0) is the intensity of oil production,

can be represented



f(t.x]%0) = q(t) * 8(x = x) (23)
For steady filtration, the production rate can be
calculated with Eq. ( 16). However it should be
reasonably modified by careful analysis. m = (C,/ C;)
is the ratio of compressibility, which is zero for
incompressible filtration. ¢(¢) is the time dependent
rate of production of a well at x0 .

although,
been simplified,

It is seen that,
the transient term on the left hand side has
the space dependent term becomes
more complicated. Thus quantitative analytical work
would encounter rather large difficulties. Therefore, as
an example numerical solution of the govemning
equation for NorNew tonian fluid flow in porous media
is given in the next section.

5. NUMERICAL SIMULATION

A onedimensional single well problem s
numerical simulated by solving Eq. (22) given in the
foregoing section. which is first discretized by use of a
staggered grid system. where the variable U at i node
is stored at the center point between w; and w1,
positioned at ri yyoand rir 2. The discretization of

(22) yields the following finite difference equations:

fori= 1
(ri{l— r) 1 |
L (U Ui) +
wi i UL+ 6152 0 (24)
ZL+1LU,Lnl+l:— 5’(;
for2 <i SN -1
1, 2 2
E(rnl— ri-i) e )
~ (U7 - U)+
lz+11rz+1U’Lr:-ll+l— l+1 Uml+1
l+l Ul+1 (25)

Ul+1 l+l .

Cf(rl_rl l)

A lwlll n—-1

a B|lwi 1 W1 _
k+k Tr wi; =0
fori = N
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(ri— rl 1)( Uz+1 Ul)_ wl+llUrlnl+1: 0

Ul;rl— +2

C(ri—- ri- 1) Z(U[+1

[
[

in which (24) and (26) are the discretized forms of
the boundary conditions given by

l+1). (26)

K1
wi = 0

rwP= ¢ = Constant, for r = ru (27)
w= 0, forr> ry (28)
accom panied with the initial conditions:

w(r,t)=0, U(r,t)= 1, fort =0 (29)

and A, N and [ are the time interval, total grid
number and time level respectively. In addition. it is
selected that ri= and ri+1= 1. 05ri. Note that
the variable U can be transformed to pressure P
immediately in terms of Eq. (20). The matrix form of
finite difference equations can be written as

rw,

a0 bi? ol
0 ab ay? 0
U,
L] L] L] L] L] L] U2
L] L] L] L] L] L] wz
w 1
& af &0
\a(” 0 . 0 aM)/
i
d5Y
) (30)
a8
dy?
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1, 2, 3, 41isused to
indicate the difference of the matrix elements.

(24), (25) and (26). it is seen that

where the supersripts (k), k=
From

forz = 1.
2 2
(1) (ri+1— ri) (2)
ar = ,ai =0
At
al’ =0, Y= rurt!
biY = ra  UREY, bY = Ofor k= 1,3,4
Y= Ofor k= 1,2,3.4
diV = aVui- & 4P =- &
“ R o

(31)

for2 <i SN - 1

2 2
(1) (ri+1— ri—l)
a; = P

2N
al¥ = - Hurt!
. — L
a = Ciri— ri1)
@ _ L, oA BlLw !
@ _ Logw L4+ H 7
a; = Z(Ul + U-ll—l) k + k ﬁ
b? = ra URYY,
bi* = Ofor k= 1,34
C(L3) - _ al(3), C(Lk) = OfOI“ k= 19 274
4 = WV, 4= 0
(32)

and for i = N .
(1) M (2) b1 pmir 1
a = At , @i == v t
WY - 1
L - Ct(ri_ I 1)7
I SN I 1 NI ]
@ _ 1, N A B|lwi |
H = 2(UL + Ul—l k + k ﬁ
b = Ofork= 1,234
4 == af, e = Olork= 1,24
A = o, = 0

(33)

Table 2 Parameters for Non-Newtonian fluid flow"

_ 9. 107 P,
Initial pressure Po= 2+ 10"Pa

Initial porosity ¢=2
Initial fluid density Po= 960 k¢/m®
Formation thickness h= 10 m
Fluid compressibility Co=8.510" pa!
Rock compressibility C=6.0010 10 pg!
M ass product.if)n rate :] ~ 101000 ke/d
Permeability k=105 m/d
Welbore radius ro = 0.062 m

" 1 Darcy= 1.02:10 “m’

then by choosing the simple iteration approach, to
the

algebraic equations are solved by a compact ZG cross

overcome the nomlinearity of equation ( 30),

diagonal decomposition algorithm (see Ref.[ 12]) .
the
parameters illustrated in Table 2 for the flow in a

The numerical results, with respect to
single well of NomNewtonian fluid, have been
obtained which are found to be

independent when the total grid number is 100.

grid number

As shown in Fig. 2. For constant rate of
production, the power index has a profound influence
on the pressure distribution in the vicinity of an oil
well. The welkbore pressure, i.e., the pressure at r
= ru, decreases with increasing power index,
regardless of the value of A being zero or nom-zero.
However, there is a region in which the value of
pressure is larger when the power index is chosen to be
a large one. For the muliiple parameter Nom
New tonian fluid, i. e., for the case of A Z 0, the
pressure drops more quickly than poweslaw Nom
Newtonian fluid. Fig. 3 shows the evolution of
pressure and velocity of filiration in the porous
medium. For a given rate of production. The velocity
variation as time increases is small, and it seems that
the property of rheology almost has no effects upon the
velocity distribution along the radial direction.

6. CONCLUSION
A multiple parameter Nor New tonian fluid model
for the investigation of filtration in a porous medium
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Fig. 2 The influence of power index on the pressure

distribution in the near well region, under the
conditions of B = 200 kgs"™ % m and ¢t = 150d
with the remained parameters shown in Tab. 1

has been proposed, which may be considered to be the
generalization of Leibenzonian model.

It was found that, the
model becomes the powerlaw fluid model; if B = 0,
the model reduces to the Newtonian fluid model; and
finally one defines the Leibenzonian fluid if A Z0, B
1
Z0, n= X

By using this multiple parameter model, an

if one chooses A = O,

expression for the rate of production involved with the
welkbore pressure has been derived, which is found to
be different from the Dupui formula based on the linear
Darcy’ s law. T he expression for the rate of production
is certainly of special importance in the application of
the multiple model to engineering.

T he equations governing the filiration of multiple
parameter fluid has been derived, which can be used as
the foundation of numerical simulation for the problem
of single well. The numerical results obtained by use of
the cross diagonal decomposition ZG algorithm, show
that the power imdex has a strong effect on the
pressure distribution in the near well region in the case
of definite rate of production. It means that, for a
large power index, in order to recover the same
amount of NomNewtonian oil a comparatively large
pressure, gradient should be maintained, By comparing
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Fig.3 Normalized pressure and velocity distribution for the

caseof n= 0.5and B = 20kgs " */m, with the

remained parameters shown in Tab. 1

the results in the cases of A = 0 and A = 5kg/(sm),
it is found that the increase of parameter A , leads to
the greater difficulty of heavy oil recovery. However,
to extend the applicability of this multiple parameter
model in engineering, particular auxiliary ex periments

are needed to determine the multiple parameters.
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