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ABSTRACT: � A multiple parameter model to describe t he Non-

Newtonian properties of fluid filtration in porous media is

presented w ith regard to the pressure gradient expression in terms

of the velocity of filtration, where the multiple parameters should

be determined by measurements. Based on such a model, an

analysis was furnished to deduce the formula for the r ate of

production of a oil well, and the governing equations for single

phase Non-Newtonian fluid fr itration. I n order to examine the

effects of model par ameters. the governing equations w ere

numerically solved with the method of cross-diagonal

decomposition ZG method. It is found that, fo r constant rate of

production. t he power index n of the model influences the

pressure distr ibut ion considerably , particular ly in t he vicinity of a

sing le well. The w el-l bore pressure o f Leibenzonian fluid is lower

t han t hat of the pow er- law fluid in the case of the same

parameter B and the power index n = 0. 5 .

KEY WORDS: � multiple parameter model, filtr at ion, Non-

Newtonian fluid

NOMENCLATURE

A Empirical coeff icient , kg/ ( sm)

B Empirical coef ficient, kgs
n- 2

/ m

C and C1 Integ ral constant

C t Total compressibility, 1/ Pa

C�Compressibility of fluid, 1/ Pa

Cr Compressibility of rock, 1/ Pa

g The gravitat ional accelerat ion, m/ s2

h effect ive thickness, m

H Consistency of pow er- law fluid, kgsn- 2/ m

k Absolute permeability, m2

n Power index

P Pressure, Pa

P 0 Init ial pressure, Pa

Pw Wel-l bore pressure, Pa

Pe Oil discharge Pressure, Pa

q Rate of mass product ion, kg/ s

r Rat ial distance, coordinate, m

rw Wel-l bore radius, m

re Oil discharge radius, m

U Exponential funct ion of pressure

w Magnitude of velocity vector of filtration, m/ s

w max Max imum velocity of filtration, m / s

�w Velocity vector of f ilt rat ion, m/ s

�x Vector of a posit ion in space, m

�x 0 Vector of a posit ion of a well space, m

z Depth of the porous medium from the ground,

m

z 0 Reference depth, m

GREEK SYMBOLS

�Fluid density, kg/ m3

�0 Initial fluid density, kg/ m
3

� � Porosity of the rock

� 0Initial porosity of rock

� Potent ial function of f ilt rat ion, m

� wWel-l bore f low potential, m

� eDischarge f low potential, m

�ef f Effective viscosity, kg/ ( sm )

� � Potential gradient

SUBSCRIPTS

0 Initial

e Discharge

ef f Effect ive

i Grid node number

t T otal

w Wel-l bore

1. � INTRODUCTION
Available Non-New tonian fluid models used to

study the performance of Non-New tonian fluid

filtrat ion in porous media are required for the recovery

of subsurface pet roleum reservoir. The performance of

filtrat ion is mainly determ ined by the relat ion of the

filtrat ion velocity and the pressure gradient, which w as
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conf irmed to be nonlinear for Non-New tonian fluid

flow in a porous medium by a larg e amount of

experiments. It nodaubtedly deviates from the well

know n Darcy � s curve of f ilt rat ion of a normal

Newtonian f luid. How ever, in many previous papers,

the nonlinear relat ionship betw een velocity and

pressure gradient of Non-New tonian fluid has been

linearly approx imated to result in the simplifed fluid

models, for example, the Bingham fluid model
[ 3, 10]

,

segmental linear f luid model[ 8] . This kind of

simplif icat ion t ruly introduces deviations under the

circumstance of small pressure gradient . For Non-

Newtonian f luid, a variety of rheological models were

summarized by Bird et al[ 2] . , ( 1969) Recenty, M a

and Ruth performed a physical explanation of Non-

Darcy effects, although a direct predict ion of the fluid

mot ion in a porous medium has not been furnished

further in the reported w ork[ 7] .

Notably, Gogarty
[ 4]

found by experiments that

effect ive viscosity of pseudoplast ic fluid flow in a core

depends upon the average shear rate, which is a sing le-

valued funct ion of a velocity in a given porous medium.

T he experimental results have been ut ilized as a bridge

in the theoret ical w ork of Ikoku et al[ 6] . , and Wu[ 11] ,

in which the effects of pow er- law f luid behavior of

filtat ion and displacement have been invest ig ated

analyt ically. How ever, despite of it s obvious

advantages in the descript ion under the condit ion of

small velocity. the pow er- law model is hardly

appropriate to large pressure gradient . Consequently,

Gurbanov et al[ 5] . , completed their analysis with

Leibenzonian f luid model, and their solution indicated

that empirical coefficients have a profound influence on

the mass rate of a product ion w ell for heavy oil.

In this paper, a multiple parameter fluid model is

proposed for Non-New tonian fluid f iltration, which is

more complicated, but is ant icipated to have w ider

feasibility of engineering applicat ion. T he model is

used to deduce the governing equat ions of f luid f low in

a porous medium which are numerically solved w ith a

cross-diagonal decomposition ZG [ 12] method to find the

effects of Non-New tonian behavior. It is found that

the expression for the mass rate of production of a

single oil well in steady f ilt rat ion is really different

from Dupui� s[ 5] expression based on Darcy� s law .

2. � MULTIPLE PARAMETER FLUIDMODEL

Consider the f ilt rat ion of Non-New tonian fluid

flow in a porous medium. T he results of experiments

showed that the non- linear of f ilt rat ion in porous media

just strong ly appeares in the case of comparatively

small pressure gradient. Subsequent ly, experimental

data indicates that if the velocity in porous media is

larger, the relationship between the pressure g radient

and the velocity tends to be linear, thus, instead of

Darcy � s law , the Non-Newtonian f luid f low in a

porous medium is considered to adherence the

follow ing law:

�g � Z - � P = (
A
k

w +
B

k
(

w

k
)

n
)
�w
w

(1)

where �, g, z , �w , w are fluid density, g ravitational

accelerat ion, vert ical depth from the point considered

to the ground surface, velocity vector and its

magnitude respect ively, and � is the Ham iltonian

operator. Eq. ( 1) defines a multiple parameter fluid.

As shown in Fig. 1, the filtrat ion curve in the

( �� P/ 106) plane is closely related to the parameters

selected. Thus by determining the mult iple parameter

in laboratory. The performance of Non-New tonian

fluid f ilt rat ion can be understood more accurately. In

addit ion, k is the permeability of the porous medium,

A , B and n are three empirical parameters to be

determined by experiments. From Eq. ( 1) . It is seen

that as long as the parameter B = 0, A = � , the

model reduces to the w ell know n formulation of Darcy,

i. e. , def ines the f luid to be Newtonian type.

Subsequent ly, if the third parameter n =
1
2

, the

multiple parameter model keeps the same form as

presented by Leibenzon ( see Ref. [ 5] ) . Which is

suitable for non-New tonian fluid mot ion in porous

media, and the values of A and B can be found in Ref.

[ 1] . But in Ref. [ 5] there is just a table giving values

of A and B for some kinds of Non-New tonian fluids

under normal condit ions. In Eq. ( 1) , the unit of A

and B are respect ively kg/ ( sm) and kgsn- 2/ m. As A

= 0 , for power- law fluid, it is seen that

B = k
n- 1
2 �ef f (2)
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Table 1 � Measured parameters for leibenzonian fluid
*

Oil o f

lubr ication

k Temperatur e A B

m/ d /�C / kg�s- 1. 5�m- 1 / kg�sm- 1

Variation range of

velocity gradient/ s- 1

n = 0. 5 12

28 0. 0076 0. 00974 0. 020. 79

35. 6 0. 00079 0. 00394 0. 060. 5

*Cited from Ref. [ 5]

Fig . 1 � The relation between pressure gradient and velocity of

filtration, for the case of B = 20kgsn- 2m, where P is

in the unit of 106 Pa, and w w ith its maximum value

w max

where �ef f is the ef fective viscosity, and from the w ork

of Savins[ 9] , it is def ined as

�ef f =
H
12

(9 +
3
n

)
n
( 150k�� )

1- n
2 ( 3)

in w hich H represents the consistency of pow er- law

fluid and � � is the porous medium. Obviously, the

parameter n to be measured is rehabilitated to the

pow e-r law index, the pow er- law model is just a

simplif ied model of the present one. T he combination

of relations ( 2) and ( 3) g ives

B =
H
12

(9 +
3
n

)
n
( 150�)

1- n
2 ( 4)

which is only applicable to pow er- law fluid filtrat ion.

For Leibenzonian f luid, the measured results for the

temperature and permeability in experiments. cited

from Ref. [ 5] , are indicated in Table 1, w here the

variat ion range of velocity g radient of filterat ion is

show n as w ell. In the nex t sect ion, at tent ion is

focused on deducing the expression of product ion rate

of single w ell.

3. � RATE OF PRODUCTION

Consider one-dimensional radial flow under steady

condit ion. Assume that the rock non-deformed, thus

the cont inuity equat ion can be writ ten as

� � ( �w ) =
1
r

d ( r w )
dr

= 0 (5)

By intergrat ion, one gets

rw = C (6)

Since the mass rate q , of a productive oil well w ith

the ef fective thicknessh of the porous medium could be

expressed by

q = 2�hr w (7)

by comparing ( 7) w ith ( 6) , it is found that

C =
q

2�h
, w =

C
r

(8)

On the other hand, w e def ine a f low potent ial � �
which sat isf ies the follow ing expression:

� � =
� P
�g

- � z (9)

which means the potent ial

41



� = � 0+�
P

P
0

dP
�g

- ( z - z 0) (10)

in w hich � 0 � is the reference flow potent ial for p =

P 0 . and z = z 0 .

�= �0 e
C
�
( P- P

0
)

(11)

then by some algebraic operat ions, yields

� = � 0- ( z - z 0) +
1 - e

C
�
( P- P

0
)

�0gC�
(12)

Substituting ( 9) into ( 1) and integrating under the

assumpt ion of incompressible fluid, one could obtain

the follow ing expression:

� = C1+ ( �g )
- 1 �

A
k

Clnr +
B

k
(

C

k
)

n r
1- n

1- n (13)

where C1 is a constant of integrat ion.

T he boundary condit ions are

� = � wfor r = rw

� = � efor r = re (14)

where r w , r e are the w ell radius and o il discharge

radius respectively, while � w, � eare respect ively the

w el-l bore flow potent ial and discharge flow potent ial.

T he subst itution of ( 14) into equation ( 13) gives

C 1 =
1
2 ( � w+ � e+

1
2 ( �g )

- 1 �

A
k

Cln( rw , r e) +
B

k
(

C

k
)

n r
1- n
w + r

1- n
e

1- n
(15)

and

( �g) � ( � e- � w) =
A
k

Cln(
re

r w
) +

B ( r
1- n
e - r

1- n
w

( k )
1+ n

(1 - n)
� C

n
(16)

the applicat ion of Eq. ( 8) yields the relat ion of flow

potent ial difference and the rate of oil product ion

( �g) � ( � e- � w) =
Aq
2�hk

ln(
re

rw
) +

(
q

2�h
)

n B ( r
1- n
e - r

1- n
w )

( k )
1+ n

( 1- n)
( 17)

from which the rate of product ion can be evaluated

with the New ton-Raphson iteration w hen the remained

variables are g iven. It is also applicable to the problems

of mult iphase flow and displacement in porous media,

prov ided that some considerations of effects associated

with relat ive permeability and saturat ion are included.

4. � GOVERNING EQUATION OF FILTRATION

Consider the problem of the sing le phase

transient . flow of the Non-New tonian f luid in a porous

medium . Cr is assumed to be the compressibilty of the

rock, thus, the porosity could be w rit ten as

� = �0 e
C

r
( P- P

0
)

( 18)

where �0is the init ial porosity. In order to linearize the

time dependent term in the equat ion of f ilt rat ion, w e

assume that there is a new variable U , defined by the

exponential funct ion

U = e
( C

r
+ C

�
) ( P- P

0
)

= e
C

t
( P- P

0
)

( 19)

� � Applying Eq. ( 12) yields the relation betw een U

and �

U =
1

m

1 - ( �0gC�) ( �+ z - �0 - z 0)
( 20)

� � Since the governing equation of f ilt rat ion has the

follow ing form :

�( ��)
� t

= - � � ( ��w ) + f ( t , �x , �x 0) ( 21)

Appling Eqs. ( 1 ) and ( 20 ) . One can obtain the

follow ing governing equat ion w ith the variables U and

w :

� U
� t

= �- 1
0 � �

k ( U
- 1 � U - C tU

m � Z)

C t ( A + B ( w / k )
n- 1

)
+

( �0�0)
- 1

f ( t , �x , �x 0)

�0g - U
m � Z +

U
- 1 � U
C t

= -

A
k

w +
B

k
(

w

k
)

n
(
�w
w

)

( 22)

where f ( t , �x , �x 0 ) is the intensity of oil production,

which, w ith use of Dirac funct ion, can be represented
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as

f ( t , �x , �x 0) = q ( t ) � �( �x - �x 0) (23)

For steady filtrat ion, the production rate can be

calculated w ith Eq. ( 16 ) . How ever it should be

reasonably modif ied by careful analysis. m = ( Cp / C t )

is the ratio of compressibility, which is zero for

incompressible filtration. q ( t ) is the t ime dependent

rate of production of a w ell at �x 0 . It is seen that ,

although, the transient term on the lef t hand side has

been simplified, the space dependent term becomes

more complicated. Thus quant itat ive analyt ical w ork

w ould encounter rather large difficult ies. Therefore, as

an example numerical solut ion of the governing

equation for Non-New tonian f luid flow in porous media

is given in the nex t sect ion.

5. � NUMERICAL SIMULATION

A one-dimensional sing le w ell problem is

numerical simulated by solving Eq. ( 22) given in the

foregoing sect ion. w hich is first discret ized by use of a

stag gered grid system . w here the variable U at i node

is stored at the center point between w i and w i+ 1 ,

posit ioned at r i- 1/ 2and r i+ 1/ 2 . The discret izat ion of

( 22) yields the follow ing f inite difference equat ions:

for i = 1

( r
2
i- 1 - r

2
i )

�t
( U

l+ 1
i - U

l
i ) +

w
l+ 1
i+ 1 r i+ 1 U

m l+ 1
i+ 1 +

q
�0

= 0

w
l+ 1
i r iU

m l+ 1
i = -

q
�0

(24)

for 2 � i � N - 1

1
2

( r
2
i+ 1- r

2
i- 1)

�t
( U

l+ 1
i - U

l
i ) +

w
l+ 1
i+ 1 r i+ 1 U

m l+ 1
i+ 1 - w

l+ 1
i r i U

m l+ 1
i = 0

U
l+ 1
i - U

l+ 1
i- 1

C t ( r i - r i- 1)
+

1
2

( U
l+ 1
i + U

l+ 1
i- 1) �

A
k

+
B
k

| w
l+ 1
i |

k

n- 1

w
l+ 1
i = 0

(25)

for i = N

( r
2
i - r

2
i- 1)

�t ( U
l+ 1
i - U

l
i ) - w

l+ 1
i r iU

m l+ 1
i = 0

U
l+ 1
i - U

l+ 2
i- 1

C t ( ri - r i- 1)
+

1
2

( U
l+ 1
i + U

l+ 1
i- 1) �

A
k

+
B
k

| w
l+ 1
i |

k

n- 1

w
l+ 1
i = 0

( 26)

in which ( 24) and ( 26) are the discret ized forms of

the boundary condit ions given by

rw�= q = Constant, for r = rw ( 27)

w = 0, for r > rN ( 28)

accompanied w ith the init ial conditions:

w ( r , t ) = 0, U( r , t ) = 1, for t = 0 ( 29)

and �t , N and l are the time interval, total grid
number and t ime level respect ively. In addit ion. it is

selected that r 1 = r w , and r i+ 1 = 1. 05r i . Note that
the variable U can be transformed to pressure P

immediately in terms of Eq. ( 20) . The matrix form of
finite dif ference equat ions can be w rit ten as

a
(1)
1 0 � � b

( 2)
1 a

( 2)
1

0 a
( 1)
2 � � a

(2)
2 0

� � � � � �

� � � � � � �

� � � � � � � �

c
( 3)
3 a

( 3)
2 � � a

(4)
2 0

a
(3)
1 0 � � 0 a

( 4)
1

U1

U2

�
�
�
w 2

w 1

=

d
( 1)
1

d
( 1)
2

�
�
�
d

( 2)
2

d
( 2)
1

( 30)
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where the supersripts ( k ) , k = 1, 2, 3, 4 is used to

indicate the difference of the matrix elements. From
( 24) , ( 25) and ( 26) . it is seen that

for i = 1 .

a
(1)
i =

( r
2
i+ 1- r

2
i )

�t
, a

( 2)
i = 0

a
(3)
i = 0, a

( 4)
i = r iU

m l+ 1
i

b
( 2)
i = r i+ 1 U

m l+ 1
i+ 1 , b

( k )
i = 0 for k = 1, 3, 4

c
( k)
i = 0 for k = 1, 2, 3, 4

d
( 1)
i = a

(1)
i U

l
i -

q
�0

, d
( 2)
i = -

q
�0

(31)

for 2 � i � N - 1

a
(1)
i =

( r
2
i+ 1- r

2
i- 1)

2�t
,

a
(2)
i = - r

l+ 1
i U

m l+ 1
i

a
(3)
i =

1
C t ( r i - r i- 1)

,

a
(4)
i =

1
2

( U
l+ 1
i + U

l+ 1
i- 1)

A
k

+
B
k

| w
l+ 1
i |

k

n- 1

b
( 2)
i = r i+ 1 U

m l+ 1
i+ 1 ,

b
( k )
i = 0 for k = 1, 3, 4

c
( 3)
i = - a

(3)
i , c

( k )
i = 0 for k = 1, 2, 4

d
( 1)
i = a

(1)
i U

l
i , d

(2)
i = 0

(32)

and for i = N .

a
(1)
i =

( r
2
i - r

2
i- 1)

�t , a
( 2)
i = - r

l+ 1
i U

m l+ 1
i

a
(3)
i =

1
C t ( r i - r i- 1)

,

a
(4)
i =

1
2

( U
l+ 1
i + U

l+ 1
i- 1)

A
k

+
B
k

| w
l+ 1
i |

k

n- 1

b
( k )
i = 0 for k = 1, 2, 3, 4

c
( 3)
i = - a

(3)
i , c

( k )
i = 0 for k = 1, 2, 4

d
( 1)
i = a

(1)
i U

l
i , d

(2)
i = 0

(33)

Table 2� Parameters for Non-Newtonian f luid f low*

Initial pressure

Initial porosity

Initial fluid density

Formation thickness

Fluid compressibility

Rock compressibility

Mass product ion rate

Permeability

Wel-l bore radius

P 0 = 2 � 107 Pa

�= 2

�0 = 960 � kg/ m3

h = 10 � m

C�= 8. 5�10- 10 � Pa- 1

C r = 6. 0�10- 10 � Pa- 1

q = 10�1000 � kg / d

k = 10. 5 � m/ d

r w = 0. 062 � m

*� 1 Darcy= 1. 02�10- 12
m

2

then by choosing the simple iterat ion approach, to

overcome the non- linearity of equation ( 30 ) , the

algebraic equat ions are solved by a compact ZG cross-

diagonal decomposit ion algorithm ( see Ref. [ 12] ) .

The numerical results, with respect to the

parameters illust rated in T able 2 for the flow in a

single w ell of Non-New tonian fluid, have been

obtained which are found to be grid number

independent w hen the total grid number is 100.

As shown in Fig. 2. For constant rate of

product ion, the pow er index has a profound inf luence

on the pressure distribut ion in the v icinity of an oil

well. T he w el-l bore pressure, i. e. , the pressure at r

= r w , decreases w ith increasing pow er index,

regardless of the value of A being zero or non-zero.

How ever, there is a region in w hich the value of

pressure is larger w hen the power index is chosen to be

a large one. For the mult iple parameter Non-

New tonian f luid, i. e. , for the case of A � 0 , the

pressure drops more quickly than pow er- law Non-

New tonian f luid. Fig. 3 shows the evolut ion of

pressure and velocity of filt rat ion in the porous

medium. For a given rate of product ion. The velocity

variat ion as t ime increases is small, and it seems that

the property of rheology almost has no effects upon the

velocity distribut ion along the radial direction.

6. � CONCLUSION
A multiple parameter Non-New tonian fluid model

for the invest ig at ion of filtration in a porous medium

� � �
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Fig . 2 � The influence of pow er index on the pr essure

distribution in the near w ell r eg ion, under the

conditions of B = 200 kgsn- 2/ m and t = 150 d

w ith t he remained par ameters shown in Tab. 1

has been proposed, w hich may be considered to be the

generalizat ion of Leibenzonian model.

It w as found that, if one chooses A = 0 , the

model becomes the power- law f luid model; if B = 0 ,

the model reduces to the New tonian f luid model; and

finally one def ines the Leibenzonian fluid if A � 0, B

� 0, n =
1
2

.

By using this multiple parameter model, an

expression for the rate of production involved w ith the

w el-l bore pressure has been derived, w hich is found to

be dif ferent from the Dupui formula based on the linear

Darcy� s law . T he expression for the rate of production

is certainly of special importance in the applicat ion of

the multiple model to engineering.

T he equat ions governing the f ilt rat ion of multiple

parameter f luid has been derived, w hich can be used as

the foundat ion of numerical simulation for the problem

of single w ell. The numerical results obtained by use of

the cross diagonal decomposit ion ZG algorithm, show

that the power in-dex has a st rong ef fect on the

pressure dist ribut ion in the near well region in the case

of definite rate of product ion. It means that , for a

large pow er index , in order to recover the same

amount of Non-New tonian oil. a comparat ively large

pressure gradient should be maintained. By comparing

Fig . 3 � Normalized pressure and velocity distribution for the

case of n = 0. 5 and B = 20 kgs- 1. 5/ m, w ith the

remained parameters shown in Tab. 1

the results in the cases of A = 0 and A = 5kg/ ( sm ) ,

it is found that the increase of parameter A , leads to

the g reater diff iculty of heavy oil recovery. However,

to ex tend the applicability of this mult iple parameter

model in engineering, part icular auxiliary experiments

are needed to determine the mult iple parameters.
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