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This article presents the results of numerical evaluation of weakly turbulent natural con-

vection of air in a rectangular enclosure with differentially heated side walls and adiabatic

horizontal walls. The turbulence in the natural convection was described by k–e equations,

which were solved by Strang splitting, while average thermal and fluid flow fields were

described by statistically averaged equations, which were solved by the projection method

PmIII. The combined application of projection method and the Strang splitting char-

acterizes the numerical method in this study. Numerical results for Rayleigh number

1.58610 9 have revealed reasonable agreement with the existing experimental ones, with

some discrepancy attributable to the adiabatic boundary conditions on the horizontal walls.

The results are also in good agreement with some published numerical results, particularly

at higher Rayleigh numbers. However, comparison with the latest experimental data reveals

that the turbulent heat flux model is not quite capable of giving satisfactory temperature

distribution.

1. INTRODUCTION

Natural convection in rectangular enclosures has been extensively studied
experimentally and numerically, owing to the wide engineering applications such as
building ventilation and air conditioning, cooling of electronic devices and solar
collectors, and nuclear reactor subsystems. There are many works simulating natural
convection in enclosures, some of which have further included the interaction
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between radiation and natural convection, such as the recent work by Velusamy et al.
[1]. Earlier numerical simulations of turbulent natural convection in a square
enclosure with differential heated side walls and insulated horizontal walls were
conducted by de Vahl Davis and Jones [2]. Since it is difficult to realize identical
conditions in experiment to those in numerical simulation, there were discrepancies
between the results of computation and measurement. Experimentalists have noticed
the effect of the thermal boundary conditions on the horizontal walls upon the
distribution of local Nusselt number on the vertical walls [3, 4]. A parametrical
numerical study of this effect for the cases of Rayleigh number in the range 104–107

was reported by Ciofalo and Karayiannis [5]. It was indicated that the effect of
thermal boundary condition on the horizontal walls is relevant, particularly for
low-aspect-ratio enclosures.

Another earlier work was carried out by Ozoe et al. [6]. They studied nu-
merically the laminar natural convection of water for Rayleigh numbers ranging
from 106 to 109, for Prandtl numbers 5.12 and 9.17, and turbulent natural convection
of water for Rayleigh numbers in the range from 109 to 1011 and Prandtl number 6.7.
The calculations for the laminar regime were consistent with the measurements

NOMENCLATURE

Ci; i ¼ 1; 2; 3 coefficients used in turbulence

model

Cp specific heat under constant

pressure

Ec Eckert number ð¼ w2
0=Cp DTÞ

g gravitational acceleration, m2=s

Gk turbulence production term due

to turbulent heat flux

k normalized turbulence kinetic

energy

H width of the square enclosure m

L (¼H) height of the square enclosure m

Nuav overall Nusselt number

P pressure

Pk turbulence production term due

to Reynolds stresses

Pr Prandtl number of fluid

R source term

Ra Rayleigh number

S1, S2 solution operator in Strang

splitting

t0 time scale, s

t time

Tc absolute temperature of the cold

vertical wall, K

Th absolute temperature of the hot

vertical wall, K

u velocity vector

v velocity component in y

direction

w0 velocity scale, m=s

w velocity component in z

direction

bT coefficient of volumetric

expansion

de dissipation rate increment during

a half temporal step

DT ¼ Th � Tc temperature difference between

the two vertical walls

e dissipation rate of k

Y normalized temperature

nt turbulent kinematic viscosity

n molecular kinematic viscosity,

m2=s

r mean density of the fluid, kg=m3

sy;sk;se turbulent Prandtl number of Y,

k, and e
t0 time scale of the dissipation of k

Superscripts

n temporal level

* first half time level

** result from solution operator S2

Subscripts

c cold

h hot

k turbulent kinetic energy k

v velocity component v

w velocity component w

e dissipation rate of k

Y temperature Y
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of Churchill [7]. They revealed the sensitivity of the parameters used in the adopted
k–e turbulence model.

In the past decade, Fusegi et al. [8] have studied three-dimensional natural
convection in a side-wall-heated cube. The computational results were summarized
in terms of correlations for overall Nusselt numbers with Rayleigh numbers. An
excellent literature review of the numerical study of turbulent natural convection in
enclosures was presented by Henkes and Hoogendoorn [9], in which a reference
solution for the k–e model by means of transition triggering was also obtained for
the standard case of natural convection of air at a Rayleigh number of 561010 in a
square enclosure, differentially heated with adiabatic horizontal walls.

Ince and Launder [10] investigated the three-dimensional and heat loss effect
on turbulent flow in a nominally two-dimensional enclosure, using the k–e model
they reported earlier [11]. It was reported that accounting for heat loss from nom-
inally adiabatic walls or for 3-D effects led to much closer agreement with experi-
ment than hitherto. Le Quéré and co-workers [12, 13] applied the Chebyshev
expansion method [14] in the study of 2-D and 3-D natural convection in enclosures,
and explored the chaotic patterns as well as the three-dimensional transition in
natural convection. It was found that, from the direct numerical simulation of the
unsteady two-dimensional equations, the results for the chaotic natural convection
in a differentially heated, air-filled cavity of aspect ratio 4 are satisfactory. The ap-
plication of Chebyshev-Fourier expansions for the three-dimensional transition of
natural convection indicated that the strong three-dimensional mixing leaves no, or
only weak, three-dimensional structures in the time-average nonlinear solution.
Three-dimensional effects increase the maximum of the time- and depth-averaged
wall heat transfer by 15%.

More recently, Dol and Hanjalić [15] carried out a study of turbulent natural
convection in a side-heated near-cubic enclosure at a high Rayleigh number
(Ra¼ 4.961010). Their numerical method was characterized by the use of total
variation diminishing (TVD) for the treatment of convection terms in the corre-
sponding governing equations for the problem considered. Apart from the com-
plexity of three-dimensional flows, they adopted both the low-Rayleigh-number
differential second-moment stress=flux closure (SMC) and the related k–e (KEM)
model for the modeling of turbulence of natural convection in the cubic enclosure.
This study revealed that the SMC is superior to the KEM in capturing the strongly
curved flow patterns in the corner regions, and in reproducing the 3-D effects caused
by heat losses through the imperfectly insulated horizontal walls. However, the SMC
model is much more complicated than the more widely used KEM, and the solution
requires much more computational resources.

On the other hand, Mergui and Penot [16] studied experimentally the natural
convection of air in a differentially heated square cavity at Rayleigh number of
1.696109. They examined the temperature fields in the vicinity of the ceiling and the
floor which allow the characterization of the actual boundary conditions on these
walls. They also determined an analytic law for the temperature distribution along
each horizontal wall, and presented flow visualizations by using laser tomography
and spectral analysis of the time-dependent signal of the temperature recorded
at several characteristic points in the cavity. It was found that there appears
unsteadiness and a complex interaction between internal gravity waves, thermal
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instabilities along the floor, and Tollmien-Schlichting waves in the hot vertical
boundary layer. However, it seems that they reported lower local heat transfer rates.

Tian and Karayiannis [17, 18] recently conducted an experimental study for
low-turbulence natural convection in an air-filled square cavity at a Rayleigh number
of 1.586109. They presented not only the thermal and fluid flow fields but also the
turbulence quantities. It was found that, at this Ra number, the fluid in the cavity
core is stationary and stratified, and two additional much smaller vortices appear at
the hot top and cold bottom corners. The flow in the cavity was found to be limited
in a narrow strip along the walls where velocity and temperature change sharply.
Clearly, these measurements are useful not only for the construction of more ela-
borate turbulence models but also for the validation and calibration of numerical
simulators coded for natural convection. They give a brief literature review for both
experiments and numerical calculations for natural convection in enclosures.

The purpose of this article is to apply the projection method [19] and Strang
splitting [20] to simulate the turbulent flow patterns of natural convection of air in a
2-D square enclosure with differentially heated side-walls and adiabatic horizontal
walls. The widely used k–e turbulence model will be applied to evaluate the turbulent
viscosity. It is expected that the change of turbulent flow patterns at moderate Ra
can cause the oscillation of the overall Nusselt number, and that the results of cal-
culation with the combined numerical method may achieve good consistency with
the latest experimental results [17, 18] and the recent 3-D computational results [8].
This work will help to indicate the potential for the application of such a numerical
method in the treatment of other engineering problems.

The remaining text of this article is presented in the following way: Section 2
gives the governing equations and the numerical methods, attaching the assessment
of the method with respect to the published results. Section 3 contains the results and
discussion, in which the flow patterns at different Ra values and the comparison with
current measurements are shown, and the conclusions are given in Section 4.

2. GOVERNING EQUATIONS AND NUMERICAL METHOD

2.1. Governing Equations

Consider the turbulent natural convection in a rectangular enclosure in a
Cartesian coordinate system, in which y is the horizontal coordinate and z is the
vertical coordinate. The origin is allocated at the right bottom corner. It is assumed
that the turbulent kinetic energy k and its dissipation rate e in natural convection
can be adopted to present the turbulent viscosity, in which the transient terms are
retained. For the problem considered, a schematic is depicted in Figure 1, where the
enclosure is filled with a fluid with kinematic viscosity n and thermal diffusivity k.
The fluid is induced to flow clockwise by the heat transfer from the hot left wall at
temperature Th to the right wall at temperature Tc. The horizontal walls are adia-
batic. It is also assumed that the Boussinesq approximation is valid and can be used
to simplify the momentum equations. Because of kinetic energy dissipation, the
temperature equation should be supplemented with an additional term called the
Eckert number, Ec.

Following the approach of Wakitani [21], we select w0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbTHDT

p
as the

velocity scale, taking H as the length scale; hence the time scale should be
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t0 ¼ H=w0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Pr=Ra

p
H2=n, with rw2

0 being the measure of pressure. When we
further define Y ¼ ½Th � ðTh þ TcÞ=2�=DT, introducing a general form for scalar
variables f ð¼ Y; k; or eÞ, the dimensionless governing equations for the turbulent
natural-convection problem can be written as follows:

ft þ ðu � HÞf ¼ H � ðGfHÞfþ Rf ð1Þ

with the continuity equation

H � u ¼ 0 ð2Þ

and vector-form momentum equation

ut þ ðu � HÞu ¼ �HpþYlþ H � ðGu � HÞu ð3Þ

where l ¼ ð0; 1Þ denotes the unit vector in the vertical direction, and Pr is the Prandtl
number, with Rayleigh number Ra ¼ gbTðTh � TcÞH3=ðnkÞ. The diffusion coefficient
G and the source term Rf are shown in Table 1. It is noted that, in this study,

Figure 1. Schematic of the turbulent natural convection in a square enclosure differentially heated from

side walls.

Table 1. Diffusion coefficients and source terms for governing

equations

f Gf Rf

Y
1ffiffiffiffiffiffiffiffiffiffiffiffi

PrRa
p þ nt

sY
Ec

ffiffiffiffiffiffiffi
Pr

Ra

r
=nt þ 1

 !
Pk

k

ffiffiffiffiffiffiffi
Pr

Ra

r
þ nt
sk

Pk þ Gk � e

e

ffiffiffiffiffiffiffi
Pr

Ra

r
þ nt
se

½C1ðPk þ C3GKÞ � C2e�e
k
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the coefficients Ci; i ¼ 1; 2; 3 were set as 1.44, 1.92, and 0.5; and the turbulent Prandtl
numbers sY;sk;se were set as 0.9, 1.0, and 1.3, respectively.

The production terms for k contain two terms:

Pk ¼ nt 2
qv
qy

� �2

þ2
qw
qz

� �2

þ qv
qz

þ qw
qy

� �2
" #

and

Gk ¼ � nt
sY

qY
qz

with turbulent kinematic viscosity

nt ¼ Cm
k2

e

where Cm equals 0.09.
The solutions of the governing equations (1–3) should be sought under ap-

propriate conditions that are compatible with the problem considered. As mentioned
earlier, the boundary conditions on the two vertical walls can be written as

v ¼ 0 w ¼ 0 Y ¼ 0:5 k ¼ 0 e ¼ 0 for y ¼ 1; z 2 ð0; 1Þ ð4Þ

and

v ¼ 0 w ¼ 0 Y ¼ �0:5 k ¼ 0 e ¼ 0 for y ¼ 0; z 2 ð0; 1Þ ð5Þ

For the horizontal walls, we have

v ¼ 0 w ¼ 0
qY
qz

¼ 0 k ¼ 0 e ¼ 0 for z ¼ 0 or 1; y 2 ð0; 1Þ ð6Þ

It should be noted that the boundary condition for the dissipation rate is in
accordance with that initially proposed by Ince and Launder [10].

On the other hand, the initial conditions are simply assigned as

v ¼ 0 w ¼ 0 Y ¼ 0 k ¼ 0 e ¼ 10�5

for t ¼ 0; and y 2 ð0; 1Þ; z 2 ð0; 1Þ ð7Þ

The small initial value for turbulent kinetic dissipation rate is given for the
convenience of turbulent viscosity evaluation. It should be noted that the source
term in the Y equation containing the Ec ð¼ w2

0=CpDTÞ number is very small in the
problem considered. Thus, it may be ignored without causing any effect on the
numerical solutions.
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2.2. Solution Method

The solution method is characterized by the use of the projection method
(PmIII) and Strang splitting (SS) schemes. The PmIII scheme, developed by Brown
et al. [19], has been applied to evaluate the multicellular patterns of laminar natural
convection of air in a tall cavity [22] as well as to study the laminar natural con-
vection in a parallel-walled channel [23]. It is adopted to obtain the temperature and
velocity fields for the turbulent natural-convection problem at hand. Strang splitting
was first reported by Strang [20], but was used recently in construction of high-order
numerical methods for the space nonhomogeneous Boltzmann equation [24]. The
Strang splitting method is applied here to provide the solutions of the k and e
equations.

Following the description of SS given by Filbet [24], it is well known that, in a
small time interval Dt ¼ ½tn; tnþ1�, for f, the first-order splitting method gives

qf
qt

¼ Rfðf�Þ ð8Þ

with f�ð0; y; zÞ ¼ fnðy; zÞ, and

qf��

qt
¼ �½ðu � HÞf�nþ1=2 þ H � ðGfHf

��Þ ð9Þ

with f��ð0; y; zÞ ¼ f�ðDt; y; zÞ. If the numerical solution of the source term asso-
ciated part is represented by

f�ðDt; y; zÞ ¼ S1ðDtÞfn ð10Þ

and the solution of the convection-diffusion equation (9) is written as

f��ðDt; y; zÞ ¼ S2ðDtÞf�ðDt; y; zÞ ð11Þ

The Strang splitting suggests that the solution with second-order accuracy can be
expressed as

fnþ1ðDt; y; zÞ ¼ S1
Dt
2

� �
S2ðDtÞS1

Dt
2

� �
fnðy; zÞ ð12Þ

Considering the strong nonlinear property and the interaction between k and e,
with the Strang splitting, the details of the solution for k and e can be given below.
The operator S1ðDt=2Þ acting on ðk; eÞn gives

e� ¼ en þ de

k� ¼ kn þ ðRk � deÞDt=2

8<
: ð13Þ

where de ¼ Ret0=ð2t0=Dtþ C2Þ and t0 ¼ kn=en.
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Applying S2ðDtÞ on ðk; eÞ� yields the solutions of the source-term-removed
equations:

qk
qt

þ qvk
qy

þ qwk
qz

¼ q
qy

Gk
qk
qy

� �
þ q
qz

Gk
qk
qz

� �
ð14Þ

qe
qt

þ qve
qy

þ qwe
qz

¼ q
qy

Ge
qe
qy

� �
þ q
qz

Ge
qe
qz

� �
ð15Þ

The solutions are denoted by ðk; eÞ��. The final step, giving the solutions ðk; eÞnþ1, is
as follows:

enþ1 ¼ e�� þ de��

knþ1 ¼ k�� þ ðR��
k � de��ÞDt=2

8<
: ð16Þ

where de�� ¼ R��
e t��0 =ð2t��0 =Dtþ C2Þ and t��0 ¼ k��=e��. It should be noted that the

convective terms in the governing equations are spatially differenced by a second-
order upwind scheme on a nonuniform staggered grid whose minimum mesh size
near the walls is about 9.061074; these terms are obtained explicitly by using the
second-order Adams-Bashforth formula. The source terms in the k and e equations
are treated semi-implicitly.

2.3. Method Assessment and Grid Independence Inspection

The numerical method presented above was assessed by considering the natural
turbulent convection of air for Ra¼ 1.586109 in a square enclosure with differen-
tially heated side walls, while its upper and lower walls are adiabatic (schematic
shown in Figure 1). A similar situation has been experimentally studied recently by
Tian and Karayianns [17, 18]. The initial value of temperature Y in the enclosure
was zero.

The results of the grid-independence inspection are given in Table 2. It is seen
that, for the finest grid, a small change of temporal step does not affect the overall
Nusselt number ðNuav ¼ 1=Hð Þ

RH
0 qY=qyð Þ jy¼1 dzÞ. Figure 2 shows the convergence

history with the evolution of overall Nusselt number evaluated for the four different
nonuniform staggered grids given in Table 2, when the temporal step was set as
46107 3. It is seen that, even at the temporal instant t¼ 400, the absolute difference

Table 2. Grid dependence of numerical results for Ra¼ 1.586109

Grid Dt Nuav (t¼ 280)

31631 461074 65.228

41641 461074 66.472

61661 461074 68.030

81681 461074 68.576

81681 361074 68.572

81681 561074 68.582
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between the Nusselt number for grid sizes 61661 and 81681 is about unity,
implying that the relative deviation is less than 2%. The Nusselt number is almost
independent of the numerical grid when the grid size is as large as 81681. The
convergence history indicates that the overall Nusselt number has a temporal
oscillation resulting from the change of transitional flow patterns of natural
convection in the square enclosure.

For the measured value of the overall Nusselt number, Tian and Karayiannis
[17] obtained 64.0 for the hot wall and 65.3 for the cold wall. However, Mergui and
Penot [16] obtained lower overall Nusselt number than the values measured by Tian
et al. Our calculation has shown that at Ra¼ 1.586109 in terms of the adiabatic
horizontal walls, the overall Nusselt number is 68.6, illustrating a discrepancy with
recent measurement of about 7%. For the case with heat loss from the horizontal
walls whose surface temperature on the wall surfaces is given in Table 3, at
Ra¼ 1.586109, the average Nusselt number is 61.67 for the hot wall and 60.29 for

Figure 2. Convergence history with the evolution of overall Nusselt number for Ra¼ 1.586109 under

different grid systems.

Table 3. Surface temperature on the bottom and top horizontal walls for the case with heat loss at

Ra¼ 1.586109 with respect to [17]

y Y (z¼ 0) Y (z¼ 1) y Y (z¼ 0) Y (z¼ 1)

1 0.5 0.5 0.306818 70.19318 0.107955

0.897727 0.397727 0.431818 0.267045 70.23295 0.056818

0.892045 0.392045 0.420455 0.238636 70.26136 70.00568

0.857955 0.357955 0.414773 0.145455 70.35455 70.17045

0.767045 0.267045 0.397727 0.090909 70.40909 70.28409

0.656818 0.156818 0.318182 0.039773 70.46023 70.36364

0.520455 0.020455 0.255682 0.034091 70.46591 70.36932

0.443182 70.05682 0.204545 0.022727 70.47727 70.39773

0.386364 70.11364 0.170455 0 70.5 70.5

0.340909 70.15909 0.130682

TURBULENT FLOW PATTERNS IN A SQUARE ENCLOSURE 559



the cold wall. Thus, it is evident that the calculated average Nusselt number for the
hot and cold walls is sensitive to the thermal boundary conditions on the top and
bottom horizontal walls. The present results are in good agreement with the mea-
sured data. As indicated in [5] for lower-Ra cases, the heat loss from horizontal walls
is the important reason that may cause lower Nusselt number from numerical
calculation.

3. RESULTS AND DISCUSSION

The numerical results were obtained by means of the nonuniform 81681 grid
and the 4 61073temporal step. The finest mesh size close to the walls was about
961074. For higher Rayleigh numbers, the computation was terminated at the
instant t¼ 400, while for other cases, the termination was done at t¼ 200. This study
reveals the features listed below.

1. Even for turbulent natural convection, there do exist transient flow patterns
involved with the vortex motion.

2. The k–e model, if used with appropriate boundary conditions, can show
fairly satisfactory numerical solutions for the problem considered.

3. The use of Strang splitting can give rise to reasonable results.

3.1. Comparison with Measurement

The comparison of the present numerical results with measurement was mainly
carried out for the case of Ra¼ 1.586109. Apart from the overall Nusselt number
discussed in Subsection 2.3, what is presented here will include the velocity and
temperature profiles, the wall shear stresses, and the local Nusselt number
ðNuz ¼ qY=qy jy¼1Þ for a given location z on the hot wall.

Shown in Figure 3 is the velocity profile near the vertical walls at the middle-
height section z ¼ 0:5, in which both the measurement results by Tian and

Figure 3. Comparison of velocity component w at z¼ 0.5 for Ra¼ 1.586109.
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Karayiannis [17] and the numerical results obtained in this study are included. It can
be seen that for the case of adiabatic horizontal walls the maximum deviation ap-
pears at the peaks, which is about 0.02 m=s. If heat loss from the horizontal walls is
permitted, by using the surface temperature shown in Table 3, the calculated peak
value of the velocity profile is almost identical to the measured value. The overall
comparison shows that the calculated velocity profile w (z¼ 0.5) is in good agree-
ment with the measured one.

Figure 4 gives the comparison of temperature profile near the two vertical
walls. The discrepancy between the calculated and measured temperature profiles
may be attributed to the physical model for the turbulent heat flux. Nevertheless, the
comparison also indicates overall good agreement between the results of calculation
and measurement.

The satisfactory performance of the present numerical method can also be
observed from the comparison of the wall shear stresses and the local Nusselt
number on the hot wall, as shown in Figures 5 and 6. From Figure 5, it is seen that,
for the case of adiabatic horizontal walls, the calculated wall shear stresses on the hot
and cold walls are symmetric with respect to the point z¼ 0.5. However, the per-
mission of heat loss from the horizontal walls can make a wavy distribution in the
bottom region for the hot wall and in the top region for the cold wall, implying that
the heat loss has certainly changed the flow patterns at the particular Rayleigh
number Ra¼ 1.586109. In comparison, the measured shear stresses are distorted to
be asymmetrical, most likely due to the presence of asymmetrical heat loss from the
horizontal walls. However, good agreement for the shear stresses is observable.

Figure 6 presents the local Nusselt number along the vertical hot wall, from
which it can be seen that the curve given by Mergui and Penot [16] indicates that
the heat transfer rate measured is lower. In the central region of the vertical wall, the
calculated values of local Nusselt number show very good agreement with the
measured values of Tian and Karayiannis [17]. The evident deviations near the top
and bottom regions can certainly be explained as the result of the influence of heat
losses from the horizontal walls on the measurements.

Figure 4. Comparison of temperature at z¼ 0.5 for Ra ¼ 1.586109.
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3.2. Turbulent Flow Patterns

The flow patterns discussed in this subsection are obtained by using the
adiabatic condition on the horizontal walls. In Figure 2 the convergence history is
illustrated, and it is seen that the calculated overall Nusselt number shows evident
oscillation over the evolution time. What is the reason for the variation of heat
transfer rate across the hot wall? The change of turbulent flow patterns, i.e., flow
pattern evolution, may be the driving source, since this change may lead to variation
of the temperature gradient near the vertical hot wall.

To show the flow patterns, it is convenient to define a stream function c, which
can give rise to the velocity components by its partial derivatives, i.e.,

Figure 5. Comparison of shear stresses on the hot and cold walls for Ra ¼ 1.586109.

Figure 6. Comparison of local Nusselt number on the hot wall for Ra ¼ 1.586109.
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v ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
RaPr

p qc
qz

w ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffi
RaPr

p qc
qy

For the benchmark problem of natural convection in the laminar case at Ra¼ 107,
the iso-streamlines labeled by such c-function values were obtained and reported by
Le Quéré et al. [14] using the Chebyshev method. In this study, we define the stream
function in the same way as Le Quéré, for the convenience of comparison.

Generally, we select the case of Ra¼ 109 as an example to see how the tur-
bulent flow patterns change during a given temporal range from 100 to 130. Figure 7
illustrates the flow patterns at four instants: t¼ 100, 110, 120, and 130. It is noted
that the flow patterns in the core region show significant variation as time increases.
The patterns at the four instants are symmetric to the central point (0.5, 0.5). In the

Figure 7. Iso-streamlines for Ra¼ 109 at the instants: (a) t¼ 100, with the labeled curves corresponding to

streamfunction values 720, 75, 10, 25, 45, 60, 75, 90, and 100; (b) t¼ 110, with the labeled curves related

to the same values of streamfunction as given in (a); (c) t¼ 120, where the first labeled curve has the C
value 715, and the other labeled curves have the same C values as in (a); (d ) t¼ 130, where the labeled

curves are related to C values 5, 25, 45, 60, 75, 90, 125, and 160.
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patterns corresponding to the instants t¼ 100, 110, and 120, there exist flow se-
paration and reattachment in the boundary layers on the horizontal walls. This
appears near the left top and right bottom corner regions, where vortexes labeled
with negative c values can be observed. However, at t¼ 130, the corner vortices
merely induce the evident streamline distortion; they do not cause flow separation
and reattachment in the top and bottom boundary layers.

For the cases at different Rayleigh numbers, at the instant t¼ 200, the tur-
bulent flow patterns of natural convection of air in a differentially heated square
enclosure are presented in Figure 8. It is evident that the heat transfer rate across
the hot wall has important influence on the turbulent flow patterns of natural
convection.

However, in contrast to the obvious differences in the flow patterns, the iso-
therms depicted in Figure 9 have more simple structures. By close observation, it is

Figure 8. Iso-streamlines at the instant t¼ 200 for (a) Ra¼ 108 with the labeled curves corresponding to

streamfunction values 5, 7.5, 10, 20, 30, 40, 50, 55, 60; (b) Ra¼ 109, with the labeled curves relevant to

streamfunction values 5, 20, 40, 60, 80, 100, 110, 130, 140; (c) Ra¼ 1.586109, with the labeled curves

relevant to the same values as in (b); (d) Ra¼ 5.586109, with the labeled curves relevant to the stream-

function values 5, 50, 100, 150, 200, 250, 300, 350, 405.
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noted that the distortion and varying trend are certainly closely related to the tur-
bulent flow patterns shown in Figure 8.

3.3. Overall Nusselt Number

Table 4 shows the overall Nusselt numbers at different Rayleigh numbers. The
values calculated by the correlation of Elsherbiny et al. [25] are given in the third
column, while the overall Nusselt numbers calculated with present numerical method
for the cases with adiabatic horizontal walls are shown in the second column. The
results obtained numerically and reported by Markatos et al. [26] and Fusegi et al. [8]
are given in the fourth and fifth columns, respectively. It can be seen that the present
calculation results are in good agreement with the results reported by Fusegi et al.
The results given in Table 4 are also shown in Figure 10.

Figure 9. Iso-therms at the instant t¼ 200 for (a) Ra¼ 108; (b) Ra¼ 109; (c) Ra¼ 1.586109;

(d ) Ra¼ 5.586109. Note that the labeled curves correspond to the Y value 70.4 via 0 to 0.4 with

an increment 0.1.
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For the case Ra¼ 107, for laminar natural convection in a differentially heated
square enclosure, using the Chebyshev method, Le Quéré reported an overall Nusselt
number of 16.52. In the present simulation, the simulated Nusselt number is 18.02,
which is an overestimation of about 9%.

Markatos et al. [26] obtained results for the natural-convection problem using
wall functions, but Tian and Karayiannis [17] noted that such an application may
cause a nonunique numerical solution. With regard to the overall Nusselt numbers,
the difference between the present method and that of Markatos appears to be large
at higher Rayleigh number. On the other hand, the present simulation presents really
a excellent agreement with the results of Fusegi et al. [8], which were obtained for the
natural convection of air in a differentially heated cube. In the Ra range from 106 to
1010, the results from all three different numerical studies are quite comparable with
the measured results. For the case of Ra beyond 109, the larger deviation that can be
seen in Figure 10 may be related to the numerical viscosity, which can exhibit its

Table 4. Overall Nusselt number Nuav at different Ra

Ra

Present

calculation

Elsherbiny et al. [25]

0:062�Ra1=3

(experimental)

Markatos et al. [26]

0:082�Ra0:324

(numerical)

Fusegi et al. [8]

0:163�Ra0:282

(numerical)

106 9.81 6.20 7.21 8.02

107 18.03 13.4 15.20 15.35

108 34.06 28.8 32.05 29.39

109 61.00 62.0 67.58 56.26

1.586109 68.58 72.2 78.38 64.00

5.586109 94.56 110.0 117.96 91.36

1.05861010 110.62 136.0 145.13 109.42

1.55861010 121.32 154.8 164.52 122.04

561010 160.47 228.4 240.04 169.55

Figure 10. Comparison of the overall Nusselt number with the reported results.
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influence more conveniently for the large-Ra cases. The influence of numerical
viscosity should be the inevitable feature that may cause lower-biased temperature
gradient near the walls. A reasonable way to tackle such a discrepancy for the case of
higher Ra is to employ a wall function. It is with this consideration that the com-
parison of different turbulence models by Henkes and Hoogendoorn [27] exhibits the
most relevant significance.

4. CONCLUSIONS

This article has presented a numerical evaluation of weakly turbulent flow
patterns of natural convection of air in a differentially heated square enclosure with a
PmIII-SS joint method. By means of the projection method PmIII, the numerical
solutions for the temperature and velocity fields were obtained; by means of the
Strang splitting, the numerical solutions for the turbulent kinetic energy and the
energy dissipation rate were found. Detailed comparison with more recent experi-
mental results was carried out, including the velocity and temperature profiles, the
wall shear stresses, and the local Nusselt number for the natural convection of air in
a cube with differentially heat vertical walls at a Rayleigh number of 1.586109.
Considering that there exist differences in the boundary conditions on the horizontal
walls, the application of the joint method has proved to be able to obtain numerical
results that are in good agreement with the measured data. The comparison with the
latest experimental data reveals that the turbulent heat flux model used is not quite
capable of giving satisfactory temperature distribution. It is estimated that the nu-
merical method can be used widely in engineering problems, such as the simulation
of air flow within building spaces and around buildings.
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