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Full velocity difference model for a car-following theory
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In this paper, we present a full velocity difference model for a car-following theory based on the previous
models in the literature. To our knowledge, the model is an improvement over the previous ones theoretically,
because it considers more aspects in car-following process than others. This point is verified by numerical
simulation. Then we investigate the property of the model using both analytic and numerical methods, and find
that the model can describe the phase transition of traffic flow and estimate the evolution of traffic congestion.
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For these last few decades, the development of var
theories concerning traffic phenomena has received con
erable attention. An increasing number of investigators w
different backgrounds and points of view have conside
various aspects of traffic phenomena with very gratifyi
results. There are essentially two different types of
proaches of studying the traffic problem, namely, mac
scopic and microscopic ones. Here, we are mainly conce
with the latter ones, which are not only of great importan
with regard to an autonomous cruise control system, but
have also emerged as important evaluation tools for inte
gent transportation system strategies since the early 19
As basic and important components of microscopic
proaches, car-following theories have been given much
search interest.

Car-following theories were developed to model the m
tion of vehicles following each other on a single lane witho
any overtaking. It is based on the assumption each dr
reacts in some specific fashion to a stimulus from the veh
ahead of him. Reuschel@1# and Pipes@2# were pioneers in
the development of the theories in the early 1950s. Now
list of contributions to the theories is a long one@3–8#.
Among these theories, the classical car-following model w
of particular importance because of the accompanying c
prehensive field experiments and the discovery of the m
ematical bridge between microscopic and macroscopic th
ries of traffic flow.

The equation of the classical model, which describes
motion of the (n11)th car following thenth car in a single
lane of traffic, has been taken as

dvn11

dt
~ t1Dt !5lDv, ~1!

whereDv5vn(t)2vn11(t) andvn(t) is the velocity of the
nth car,Dt is the time lag of response,l is the sensitivity.
For the sensitivity, different functions have been assum
including ~1! constant@4#

l5a, ~2!

and ~2! step function@5#
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l5H a: s<sc

b: s.sc,
~3!

wheres is the headway, i.e.,s5xn(t)2xn11(t), herexn is
the position of thenth car.a, b, sc are constants.

Applying the classical model, we can describe the tra
dynamics from the microscopic point of view, i.e., we c
track the following vehicle over space and time as a funct
of the trajectory of the lead vehicle. Moreover, it enables
to establish a bridge between the microscopic and the m
roscopic point of views, which is a very important discove
and may be greatly expanded to provide a connection
tween the matrix of microscopic models and most mac
scopic theories of traffic flow as shown by May@9#. How-
ever, despite the importance of the classical model, it has
following defects: When the successive vehicles have id
tical speeds, from Eq.~1!, the model allows the distanc
between the vehicles to be arbitrarily close. Obviously, it
unrealistic. Apart from that, it cannot describe the accele
tion of a single vehicle correctly.

Besides the classical car-following model, there are a f
others in the literature. In 1995, Bandoet al. presented a
car-following model called the optimal velocity mode
~OVM! @7#. It was based on the idea that each vehicle has
optimal velocity, which depends on the following distance
the preceding vehicle. The equation of the model is

dvn11

dt
~ t !5k@V~s!2vn11~ t !#, ~4!

wherek is a sensitivity constant andV is the optimal velocity
that the drivers prefer. Applying the OVM, many properti
of real traffic flows can be described, such as the instab
of traffic flow, the evolution of traffic congestion, and th
formation of stop-and-go waves.

Helbing and Tilch @8# carried out a calibration of the
OVM with respect to the empirical data. They adopted t
optimal velocity function as

V~s!5V11V2 tanh@C1~s2 l c!2C2#, ~5!

wherel c is the length of the vehicles, which can be taken
5 m in simulations. The resulting optimal parameter valu
are k50.85 s21, V156.75 m/s, V257.91 m/s, C1
50.13 m21, andC251.57. The comparison with field dat
©2001 The American Physical Society01-1
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shows that OVM encountered the problems of too high
celeration and unrealistic deceleration.~see Figs. 2–4 in@8#!.

In order to solve the problems, Helbing and Tilch@8#
proposed a generalized force model~GFM!. One term is in-
creased on the right-hand side~RHS! of Eq. ~4!. Thus, the
formula of GFM reads

dvn11

dt
~ t !5k@V~s!2vn11~ t !#1lQ~2Dv !Dv, ~6!

where Q is the Heaviside function. In order to reduce t
number of parameters, they replaced the previousV function
~5! by another slightly different optimal velocity, which onl
causes a negligible effect on the results. Therefore, we
adopt theV function ~5!. The calibration shows that in GFM
k50.41 s21, which is much smaller than that in OVM. An
the results show that GFM reaches better agreement with
field data than OVM.

Comparing GFM with OVM, we find out that whenDv
>0, GFM has the same form as OVM, the difference lies
that they have different values of sensitivityk. To find out
the effect of the sensitivity on traffic-flow dynamics, we ne
carry out a numerical simulation of the motion of cars sta
ing from a traffic signal. For this condition,Dv>0 is always
guaranteed.

We carry out the simulation as in Ref.@10#. First a traffic
signal is red and all cars~11 cars in the simulation! are wait-
ing with a headway of 7.4 m, at which the optimal veloc
~5! is zero. Then at timet50, the signal changes to gree
and cars start.

From the simulation we can obtain the delay time of c
motion. Consider a pair of cars, a leader and a follow
Assume the leader changes the velocity according tov l
5v0(t) and the follower duplicates the leader’s velocity b
with some delay time , that is,v f5v0(t2dt). We define the
delay time of car motion bydt. Moreover, from the time
delay of car motion, we can estimate the kinematic wa
speed at jam densitycj , which is equal to the quotient of th
headway 7.4 m divided by the delay time of motion.

The simulation results are shown in Fig. 1~a,b! and Table
I, which are obtained from the behavior of the velocities
the 7th–10th cars because these cars behave almost i
same manner. From the Table, we learn thatk has an effect
on dt andcj . A smaller sensitivityk leads to a largerdt and
a smallercj . As Bandoet al. @10# pointed out, the observe
dt is of the order of 1s, and Del Castillo and Benitez@11#
indicated thatcj ranges between 17 and 23 km/h. Therefo
we can see that GFM is poor in anticipating the two para
eters.

Why does GFM not behave well in the aspect? We
lieve it may be because the model does not take the effe
positive Dv on traffic dynamics into account. We think th
term includingDv is effective not only under the conditio
that the velocity of the following vehicle is larger than that
the leading vehicle, but also under the opposite condit
Treiberet al. @12# also pointed out that if the preceding ca
are much faster, then the vehicle will not brake, even if
headway is smaller than the safe distance, and this inst
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cannot be explained by either OVM or GFM. According
our observation of real traffic, this instance does exist.

In accordance with the above concept, on the basis
GFM, taking the positiveDv factor into account, we obtain a
more systematic model, one whose dynamics equation i

FIG. 1. Motions of cars 1–11 starting from a traffic signal.~a!
for OVM; ~b! for GFM; ~c! for FVDM.
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follows:

dvn11

dt
~ t !5k@V~s!2vn11~ t !#1lDv. ~7!

Since the model takes both positive and negative velo
differences into account, we call it a full velocity differenc
model~FVDM!. Note that in GFM, Eq.~6! may be rewritten
as

dvn11

dt
~ t !5k@vm2vn11~ t !#1k@V~s!2vm#1l

3Q~2Dv !Dv, ~8!

wherevm is the maximum speed. The first term on the RH
is the acceleration force, and the last two terms represen
interaction force. Our model Eq.~7! may be reformulated
into a similar form:

dvn11

dt
~ t !5k@vm2vn11~ t !#1k@V~s!2vm#1l

3Q~2Dv !Dv1lQ~Dv !Dv. ~9!

Comparing with Eq.~8!, FVDM differs in the expression o
interaction term, where GFM assumes the positiveDv does
not contribute to the vehicle interaction, while FVDM su
gests it does contribute to vehicle interaction by reduc
interaction force becausek@V(s)2vm# is always negative
andlQ(Dv)Dv is always positive.

Now we apply FVDM to simulate the car motion under
traffic signal. Without loss of generality, here we take ste
function ~3! for l, where parametersa,b,sc are taken asa
50.5 s21, b50 andsc5100 m. The results are shown i
Fig. 1~c! and also in Table I. From the Table, we can see t
dt of FVDM is quite smaller than that of GFM, which is th
most exact in the three models. Andcj fall into the desired
range. From this point of view, FVDM describes the traf
dynamics most exactly, which verifies that the improvem
in FVDM is reasonable and realistic.

Next we examine some properties of FVDM. First,
simulation, we explore whether the model causes unreal
cally high acceleration just as OVM. Considering two ca
initially at rest, the leader car is unobstructed. Att50, the
two cars start up according to GFM and FVDM respective
We obtain the acceleration in Fig. 2. Parameters are the s
as those in the previous simulation. From the figure, we
see that the maximum value of acceleration in FVDM is n
greater than that in GFM. For the leading car in FVDM
since it is unobstructed, the headway can be assumeds→

TABLE I. Delay times of car motions from a traffic signal an
disturbance propagation speed at jam density in different mode

Model dt ~s! cj ~km/h!

OVM (k50.85 s21) 1.6 16.65
GFM (k50.41 s21) 2.2 12.11
FVDM (k50.41 s21) 1.4 19.03
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1`, thereforel50, thus it has the same acceleration as t
in GFM. As for the following car, the main cause of th
difference is that the car in FVDM accelerates more quic
than the car in GFM. Therefore, the delay time in FVDM
smaller than that in GFM.

Making a linear stability analysis of FVDM similar to
Ref. @7#, one obtains that only when the condition

f 5V8~b!,
k

2
1l ~10!

is met, the traffic is stable. For OVM, the criteria for stabili
is

f ,
k

2
. ~11!

Comparing the criterion~10! with ~11!, we find out that they
are consistent because if we assumel50 in FVDM, it re-
duces to OVM and then Eq.~10! is the same as Eq.~11!.

Now we carry out a numerical simulation to check t
analysis, still taking Eq.~5! for the function ofV and the
parameters are the same as before. Since the headways in
the following simulation never exceedssc5100 m, thus
constantl50.5 s21 can be adopted instead of step-functi
~3!. We take car numberN5100, the circuit lengthL
51500 m. We set an initial disturbance as

x1~0!51 m; xn~0!5~n21!L/N for nÞ1, ~12!

vn~0!5V~L/N!. ~13!

Substituting the values of the parameters into criterion~10!,
we learn the initial disturbance is unstable. Figure 3 sho
the snapshots att5300 s andt52000 s. The homogeneou
flow eventually develops into congestion, which correspon
to stop-and-go traffic. In the phase space (s2v space!, we
can see that after enough time, when the congestion beco
stationary, the motion of vehicles organizes a ‘‘hystere
loop’’ as shown in Fig. 4.

.

FIG. 2. Acceleration of unobstructed leading car and its follo
ing car both initially at rest according to GFM and FVDM.
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Changing the value ofl, loops of different size can be
obtained@cf. Fig. 4#. Here, two points should be noted. Firs
for l50.4, part of the loop~for example, pointG) lies in the
region wherev,0 ands is smaller than the minimum head
way 7.4 m. Bandoet al. @10# suggested two possibilities:~1!
There may be an existence of a new phase;~2! It is artificial
due to finite-size effects. It is our intent that our future wo
will determine which one is right. Second, whenl50.8,
criterion ~10! is held, the traffic flow is stable, the hysteres
loop will not be generated, and in phase space, there wil
only a pointH on the optimal velocity curve instead.

In summary, we develop a full velocity difference mod

FIG. 3. The snapshots of velocity of all vehicles at differe
times.
.

n

ug
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~FVDM! for a car-following theory based on the previou
OVM and GFM. Then we apply FVDM to several simula
tions. The results reveal that FVDM predicts correct de
time of car motion and kinematic wave speed at jam dens
Moreover, unrealistically high acceleration will not appe
Linear stability analysis has been done and the stable c
rion is given, simulation indicates that FVDM can produ
the desired results such as the formation of congestion f
an initially homogenous condition, etc.
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t
FIG. 4. Hysteresis loops for FVDM at different values ofl.
ys.
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