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Abstract Transient laminar natural convection of air in
a tall cavity has been studied numerically. The Navier-
Stokes and Energy equations were solved by the accurate
projection method (PmIII), in which the derived Poisson
equation for pressure potential was solved by the ap-
proximate factorization one method (AF1). The aspect
ratio of the tall cavity is 16, and the Prandtl number of
air filled in the tall cavity is 0.71. To obtain the nu-
merical results of heat transfer by natural convection of
air in the tall cavity, the second order schemes for the
space and time discretizations were utilized. The avail-
ability of the numerical algorithm was also assessed by
considering the natural convection of air in a square
cavity which is differentially heated from side walls. It
was found that the overall Nusselt numbers for the
Rayleigh numbers covering the range from 1000 to
100000 reveal a good agreement with measured data.
When Ra takes the value in the range from 100000 to
600000, the overall Nusselt number have a relative
deviation less than 18% from the experimental data.
For the suddenly heating mode, the multicellular flow
pattern occurs when Rayleigh number belongs to the
range of Ra from 7000 to 20000. or greater than 115000.
At the critical number of cats’ eye instability, the cell
distance is just twice of the cavity width. This is
rather similar to the observed result for Bénard problem.
When Ra is over 115000, a further increase of heat

flux across the tall cavity causes serious cell-breaking.
There are 8 cells when Ra = 600000.

Nomenclature

A =L/H, aspect ratio of the tall cavity

Eav overall kinetic energy

g gravitational acceleration, m/s2

H cavity width, m

I grid number in z-direction

J grid number in y-direction

j thermal conductivity W/mK

L cavity height, m

n unit normal vector of a boundary surface m

Nc number of cells

p pressure Pa

Pr Prandtl number

Ra = gbT(Th – Tc)H3/mj Rayleigh number

Nuav average Nusselt number

Th temperature of the hot wall K

Tc temperature of the cold wall K

u� variable in accurate projection defined m/s

u = (v, w), velocity vector m/s

v velocity component in y-direction m/s

w velocity component in z-direction m/s

w0 reference velocity m/s

Greek symbols
bT coefficient of fluid thermal expansion, 1/K

v pressure potential

Dt non-dimensional time interval

DT = Th – Tc, temperature difference K

X Domain of numerical simulation

¶X Domain boundaries

w Stream function

Q non-dimensional temperature

q density of fluid, kg/m3

�2 Laplacian operator

Superscript
n time level

Subscript
T Thermal
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1
Introduction
The heat transfer problem of natural convection in a tall
cavity has been considered by many researchers for a
century, owing to its great importance in solar energy and
building services engineering systems, and other en-
gineering systems as well. A literature review before 1988
was given by Ostrach [1]. The early works were primarily
conducted by theoretical analysis and experiments. It is
well known that Batchelor [2] first noticed that natural
convective flow regime in a tall cavity at small Rayleigh
numbers. It was shown that in a differentially heated
cavity, fluid flows along the heated wall, and turns in the
top end, then sinks along the cold wall, and turns again in
the bottom end. However, in the central portion of the tall
cavity, the vertical velocity holds a cubic profile, and the
temperature decreases linearly from the temperature of the
hot wall to that of the cold wall.

Remembering this picture described by Batchelor, and
considering the visual observations and experimental
measurements given for the same regime by Elder [3], Gill
[4] developed a well known theory for this problem on
boundary-layer regime in 1966, in which the top and bot-
tom walls are adiabatic. The fundamental assumption was
that a stratified fluid core exists far away from both vertical
walls, which was taken as the matching accordance of the
boundary-layer solutions for flows near the vertical walls.
Considering the impermeable and adiabatic properties of
the horizontal end walls, Bejan [5] further proposed an
alternative approach to evaluate the arbitray constants
appeared in Gill’s solution for the boundary-layer natural
convection regime in a tall cavity. This approach was used
by Graebel [6] to consider the effects of Prandtl number on
the natural convection in a rectangular cavity. By using a
modified Oseen technique, it was found that a midsection
shear layer develops for a Prandtl number less than 1/7.

Ostrach and Raghavan [7] have investigated the effect of
stablizing thermal gradients on natural convection in rec-
tangular enclosures when the Prandtl numbers of fluids
were of order 105, Grashof numbers ranged up to 20, and the
aspect ratios were 1 and 3. ElSherbiny et al. [8] have carried
out their important experimental work on natural convec-
tion in vertical and inclined air layers. Detailed results were
reported by figures and data correlations as well. Hollands
and Konicek [9] have determined experimentally the critical
Rayleigh number for differentially heated inclined air layers.
The principle of the experimental method was first reported
by Schmidt and Milverton [10], which was adopted to study
the Bénard problem experimentally.

With the development of computer science and tech-
nology, numerical simulation has played an important role
in many fields including that of thermal science. As a
matter of fact, the numerical studies on the onset of
layered convection in a narrow slot containing a stably
stratified fluid has been reported by Wirtz and Liu [11] at
the end of 1970s. The calculation agreed generally with the
experimental data of Hart [12], and the evolution of overall
kinetic energy was given graphically. Korpela and his
coworkers [13] have carried out numerical studies on heat
transfer through a double pane window.

However, more interestingly, Le Quéré [14] has re-
ported the multiple and unsteady numerical solutions of
two dimensional natural convection in a tall cavity, in
which the space discretization for the governing equa-
tions was based on the Chebyshev expansions. Further,
the accuracy of time integration was improved to third
order, greater than the usually used second order, which
was accomplished by combining a backward Euler
scheme for the diffusive terms with an explicit extra-
polation for the convective terms by Adams-Bashforth
scheme. It was found that several braches of solutions
characterized by different numbers of cells in the flow
field, and the return to the unicellular flow structure
occur through a gradual decrease in the number of cells.
As reported, each changes in the number of cells is
characterized by hysteresis. However, it should be noted
that even though the results do convey an amazing in-
sight of natural convection in a tall cavity, but the grid
used in the numerical study seems to be too coarse at
present time. Thus, further study is required for the deep
understanding of the transition of flow patterns occurred
under the conditions of Rayleigh number near or larger
than the corresponding critical value.

Recently Jin and Chen [15] have reported the numerical
results of instability of natural convection and heat
transfer in case of large Prandtl number of fluids in a
vertical slot with an attempt to compare with the experi-
mental results given by Wakitani [16]. Similar to numer-
ical solutions of Le Quéré, Wakitani [17] has reported the
development of multicellular patterns found in the natural
convection in an air-filled tall cavity.

We have studied the thermal induced flow instability in
a horizontal parallel plate channel numerically by using
a fractional algorithm [18]. The corresponding experi-
mental visualization have been reported by Lir and Lin
[19]. In this paper, we focus our attentions on the natural
convection in a tall cavity filled with air. The thermal
induced convective flow patterns, and the evolution of
flow field as well as the overall Nusselt number are obtained
by direct numerical solution of the governing equations
with PmIII, which is an accurate projection method
developed by Brown et al. [20]. The schematic of the tall
cavity with respect ratio A(=L/H) is illustrated in Figure 1.
The cavity is heated from the left vertical wall whose
temperature is higher than that of the right vertical wall
with a constant temperature difference DT (=Th – Tc). The
implementation of PmIII shows that it is stable, and the
numerical results obtained were found to be consistent
with those existed experimental results.

2
Governing equations and numerical method

2.1
Governing equations
Consider the laminar natural convection happened in a tall
cavity schematically shown in Figure 1, where fluid filled
with kinematic viscosity m and thermal diffusivity j is
induced to flow upward due to the heat transfer from the
left wall with temperature Th, and the initial temperature
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of fluid is the same as that of the right walls Tc. The
horizontal end side walls are adiabatic. The two dimen-
sional system given in Figure 1, where the coordinate Oz
has an opposite direction of gravity g. Similar to Wakitani

[17], we introduce w0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðgbTHDTÞ
p

to measure velocity,
taking H as the measure of length, and

t0 ¼ H=w0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðPr=RaÞ
p

H2=m as the measure of time.

Thus, if we choose qw0
2 as the measure of pressure, define

Q = (T – (Tc + Th)/2)/DT, and assume that the Boussinesq
approximation holds, the dimensionless governing equa-
tions for the heat transfer problem are:

@H
@t
þ @vH

@y
þ @wH

@z
¼ 1

ffiffiffiffiffiffiffiffiffiffi

RaPr
p r2H ð1Þ

@v

@y
þ @w

@z
¼ 0 ð2Þ

@v

@t
þ @vv

@y
þ @wv

@z
¼ � @p

@y
þ Pr

Ra

� �

1
2
r2v ð3Þ

@w

@t
þ @vw

@y
þ @ww

@z
¼ � @p

@z
þHþ Pr

Ra

� �

1
2
r2w ð4Þ

whose alternative forms are

Ht þ ðu � rÞH ¼ ð1=PrRaÞ
1
2r2H ð5Þ

and

r � u ¼ 0 ð6Þ

ut þ ðu � rÞu ¼ �rpþHkþ ðPr=RaÞ
1
2r2u ð7Þ

where k = (0, 1) is the unit vector in the vertical direction,
and Pr is the Prandtl number accompanied by the Rayleigh
number Ra = gbT(Th Tc)H3/mj.

The solutions of the governing equations (5)–(7)
should be sought under appropriate conditions which are
compatible with the problem considered. As aforemen-
tioned, the boundary conditions on the two vertical walls
can be written as

v ¼ 0; w ¼ 0; H ¼ 0:5; for y ¼ 1 ð8Þ

and

v ¼ 0; w ¼ 0; H ¼ �0:5; for y ¼ 0 ð9Þ

For the horizontal side walls, we have

v ¼ 0; w ¼ 0; @H=@z ¼ 0; for z ¼ 0; or A ð10Þ

On the other hand, the initial conditions are simply
assigned as

v ¼ 0; w ¼ 0; H ¼ 0; in X; when t ¼ 0 ð11Þ

2.2
Numerical method
The accurate projection method developed by Brown et al.
(2001) employs two new variables, u� and v, which have
the relation to the velocity vector as below

u� ¼ uþrv ð12Þ

where v is the potential, and u� is the intermediate velocity
vector. Let X represent the domain with boundary ¶X, in
which the projection is

u ¼ Pðu�Þ ð13Þ

where P is the Projection operator. With the new variables,
the evolution equation becomes

ut þ ðu � rÞuþrvt ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

Pr=Ra
p

r2½rvþ 2u� ð14Þ

uj@X ¼ ub ð15Þ

Equations (12)–(15) constitute an equivalent formula-
tion of the Navier-Stokes equations (2)–(4). In this for-
mation the relevant pressure potential v takes the place of
pressure p, which can be recovered from the potential v by
stressing the corresponding equivalence aforementioned,
that is

p ¼ @

@t
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

Pr=Ra
p

r2

� �

v ð16Þ

Note that a Poisson problem is solved in the numerical
implementation of the projection method. A standard five-
point stencil approximating to the Laplacian and second-
order central differences for divergence and gradient were
generally used. Accordingly, this combination actually

Fig. 1. The schematic diagram of the tall air cavity heated
differentially
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provides an approximate projection operator which means
that the projected velocities only satisfy a discrete diver-
gence constraint to a truncation error. The time-discrete
forms of PmIII for the solution of the governing equations
are:

Hnþ1 �Hn

Dt
¼ �½ðu � rHÞ�nþ

1
2 þ 1

2

1

RaPr

� �

1
2
r2ðHnþ1 þHnÞ

ð17Þ

u�nþ1 � un

Dt
¼ �

�

ðu � ruÞ
�nþ1

2 þ
�

H
�nþ1

2k

þ 1

2

Pr

Ra

� �

1
2
r2ðu�nþ1 þ unÞ ð18Þ

unþ1 ¼ u�nþ1 �rvnþ1 ð19Þ

and

pnþ1
2 ¼ vnþ1 � vn

Dt
� 1

2

Pr

Ra

� �

1
2
r2ðvnþ1 þ vnÞ ð20Þ

where v satisfies the Poisson’s equation

r2v ¼ r � u� ð21Þ

whose boundary conditions are given by

n̂n � u� ¼ n̂n � ub; ŝs � u� ¼ ŝs � ðrvþ ubÞ on @X ð22Þ

Thus

n̂n � rv ¼ 0 on @X ð23Þ

The convective terms in the time discrete form were
evaluated by the second order Adams-Bashforth formula.
The second order upwind scheme was used in space dif-
ference. Q and u were calculated by using the second order
Crank-Nicolson method. The pressure potential v was
calculated by the procedure following reference [21],
where the approximate factorization I method, AF1, is
described in detail for approximating Laplacian operator
by Baker [22]. Iterations based on AF1 have a history of
quick convergence with the solutions having high accuracy
as shown by a comparison made for a benchmark problem
(see Ref. [21]).

The pressure field can be obtained from the potential
field v if necessary. From the calculated mm+1 and the
potential v, we have

unþ1 ¼ u�nþ1 � Dtrvnþ1 ð24Þ

The PmIII can also provide second order accuracy for
pressure even at grids near the boundaries, and this seems
to be the main potentiality over those frequently used in
previous work, such as those of Kim and Moin [23]. The
choice of Dt needs to fulfill the numerical stability condi-
tion, i.e. the Courant number should be less than unity
since the method for the governing equations of natural
convection in the tall cavity is semi-implicit.

2.3
Method assessment
The numerical method given in the foregoing subsection
was assessed by considering the natural convection of air
in a square cavity. The upper and lower walls of the cavity
were insulated perfectly, and the values of normalized
temperature Q for the left and right vertical walls were
assigned as 0.5 and –0.5 respectively. The initial value of
temperature Q in the cavity was zero. To verify the nu-
merical method carefully and rigorously, the computa-
tional results for the benchmark problem obtained by
using Dt = 8 · 10–3 and saved at t = 200 were given in
Table 1, where the numerical results given in reference
[24] (Le Quéré, 1985) were abstracted for comparison. It
was viewed that in addition to the horizontal component
of velocity v, whose value given by present method is
larger than that reported in Ref. [24], there is a satisfactory
agreement between the numerical results provided by the
two kinds of different numerical algorithm. It was con-
firmed that using the horizontal velocity component v
which was calculated by current method can also provide
the same field of stream function as that obtained by ap-
preciating vertical velocity component w. The temperature
and flow fields for Ra = 107 are shown in Figure 2. Again,
it was viewed that these contours are in good consistent
with those given in reference [24]. To confirm the arrival
of steady field for the natural convection in case of Ra = 107,
the evolution of the overall Nusselt number was shown in
Figure 3 (a), while the distribution of local Nusselt number
along the left vertical wall was illustrated in Figure 3 (b).
Therefore, it can be concluded that the numerical method

Table 1. Detail Comparison of
the Calculation Results for
A = 1 in cases of 65 · 65�

�For a given Ra, the values in the
left column was abstracted from
Ref. [24] (Le Quéré, 1985)

Ra 105 106 107

w1
2

1
2

9.119 9.109 16.39 16.46 29.27 30.10
wmax 9.619 9.602 16.811 16.845 30.17 30.74
1�y

z
0:285
0:601

0:294
0:611

0:151
0:548

0:148
0:548

0:086
0:556

0:087
0:548

vmax 34.75 44.22 64.83 135.34 148.8 446.97
z 0.855 0.897 0.850 0.944 0.879 0.964
wmax 68.64 68.42 220.06 222.22 699.3 716.84
1 – y 0.066 0.071 0.0375 0.0397 0.0213 0.0238
Nu1

2
4.523 4.643 8.826 8.286 16.51 14.42

Nuav 4.522 4.506 8.825 8.703 16.52 16.255
Numax 7.720 7.671 17.536 17.296 39.37 39.459
z 0.082 0.0714 0.039 0.0397 0.018 0.0238
Numin 0.728 0.749 0.979 1.052 1.367 1.513
z 1 1 1 1 1 1
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PmIII is applicable to the study of natural convection of air
in a cavity.

To show the grid-independence of numerical results for
the problem on hand, a test was conducted for Ra = 11000,
and the corresponding results were given in Table 2. It was
found that as soon as the gird is finer than 241 · 49, the
overall Nusselt number calculated numerically remains the
same. This implies that the grid 241 · 49, or other finer
alternatives, can be utilized in the numerical treatment of
current problem.

3
Results and discussion
Since the aspect ratio of the tall cavity was given by A = 16,
the width of the cavity H was taken as 0.03m with the
height L = AH = 0.48 m. Nearly uniform space grid sys-
tems was used, where, for a grid node near a wall, the
distance from the node to the wall were taken as half of the
mesh size Dx or Dz for internal grid nodes. The time in-

terval Dt was taken as 0.004. The Prandtl number of air
under atmospheric pressure was 0.71, but for the current
numerical study, the range of Rayleigh number was chosen
from 103 to 6 · 105. The numerical investigation was
carried out in a Pentium II type personal computer whose
primary frequency is 350 MHz.

The Poisson equation for potential v was solved by the
iterative algorithm called approximate factorization one
AF1. The criteria of iteration is that the relative error de-
fined by � = ||dpk||/(10–4 + ||pk||) should be less than 10–4,
here k denotes the iteration level, and the iterative incre-
ment dpk is given by (pk – pk–1).

3.1
Multicellular flow patterns
Owing to the onset of flow instability, the natural con-
vection manifests multicellular patterns dominated by
Rayleigh number and Prandtl number.

Figure 4 conveys the steady temperature and flow fields
shown by isotherms and streamlines for Ra = 7000, which
were obtained by starting from a uniform initial stationary
state. The cats’ eye structure including four cells does
emerge, and this is quite similar to the pattern given in
reference [24]. The cellular structure reveals its negative
symmetry with respect to the central point of the cavity
(0.5, 8). It should be noted that the cell distance is 2.0 in

Fig. 2. Flow and temperature
fields for Ra = 107 and grid 65
· 65 when t = 200.
(a) Streamlines labeled by 1, 2,
…, 8, 9 are corresponding to
wyð¼ w

ffiffiffiffiffiffiffiffiffiffiffi

Ra Pr
p

Þ values: 5, 10,
15, 20, 22, 24, 26, 28, 30.5.
(b) Isotherms labeled by 1, 2,
…, 8, 9 are corresponding to
Q values –0.4, via 0, to 0.4
with an increment 0.1

Fig. 3. (a) The evolution of overall
Nusselt number for Ra = 107, and cavity
ratio A = 1; and (b) The distribution of
local Nusselt number along the left side
vertical wall for the same Rayleigh
number and cavity ratio when t = 200

Table 2. The Grid Dependence of Numerical Results for Ra = 11000

Grid w� (0.5, 8) Nuav

121 · 25 38.492 1.523
241 · 49 38.193 1.525
301 · 61 38.216 1.525
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the case of Ra = 7000. This is different from the value
(2.817) obtained by Le Quéré (1990), see Ref [24], however,
the current cell distance is coincident with the experi-
mental result for Bénard problem, for which it was found
that the width of cells is about twice the depth of the
horizontal layer (see Ref. [25], Chandrasekhar, 1961). In
addition, the reason of regarding the fields saved at t = 200
as steady state of natural convection is that, from Figure 9,

one can find that the overall Nusselt number has remained
to be constant for a long time.

The dominating feature of Rayleigh number on the
multicellular pattern can be found clearly from Figure 5,
where the contours of stream function for Ra = 11000,
14000, and 20500 are illustrated. The corresponding value
of stream function was enlarged by a factor

ffiffiffiffiffiffiffiffiffiffiffiffiffi

Ra=Pr
p

to
provide the convenience of comparison with published
results. For Ra = 20500 there is only one cell. However, for
Ra = 11000 and 14000 there are 3 and 4 cells. But to say

Fig. 4. The temperature and flow fields for Ra = 7000 and grid 301 ·
61 when t = 200. (a) The isotherms for Q values given by –0.4, –0.3,
…, 0.3, 0.4 with an increment 0.1; (b) The streamlines for values of
w�ð¼ w

ffiffiffiffiffiffiffiffiffiffiffiffiffi

Ra=Pr
p

Þ given by 2, 9, 16, 20, and 24

Fig. 5. The flow fields for grid 301 · 61 when t = 200 and (a) Ra =
11000, and w�ð¼ w

ffiffiffiffiffiffiffiffiffiffiffiffiffi

Ra=Pr
p

Þ = 5, 10, 15, 20, 25, 30, and 35; (b) Ra
=14000, and w� = 5, 10, 15, 20, 25, 30, 35, 40, and 44; (c) Ra = 20500,
and w� = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, and 54

Fig. 6. The temperature fields for grid 301 · 61 when t = 200. Where,
for Ra = 11000, 14000, and 20500, the isotherms for values of Q
changed from –0.4 via 0 to 0.4 with an increment 0.1 are shown in (a),
(b) and (c), respectively

Table 3. The Number of Cells for different values of Ra

Ra · 10–3 Nc Ra · 10–3 Nc Ra · 10–3 Nc

7 4 14 4 118 3
9 5 18 4 150 4

10 3 20 2 200 4
11 3 20.5 1 450 7
12 4 115 1 600 8

Table 4. The Overall Nusselt Numbers for Different Ra

Ra Nuav Nuav, exp
� Ra Nuav Nuav, exp

1000 1.029 1.03 40000 2.226 2.286
3000 1.131 1.121 50000 2.370 2.450
5000 1.234 1.297 70000 2.601 2.720
7000 1.335 1.405 90000 2.765 2.941

10000 1.484 1.502 150000 3.124 3.447
11000 1.525 1.544 200000 3.357 3.771
14000 1.636 1.685 300000 3.723 4.279
20000 1.806 1.847 600000 4.356 5.313

�Interpolated value from the correlations labeled (A2) and (A3) in
Ref. [8]
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Fig. 7. The flow fields for grid 241 · 49 when t = 200 and (a) Ra =

150000, and w�ð¼ w
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Ra=Pr
p

Þ = 20, 30, 50, 60, 70, 75, 80, 100, 130,
140, and 145; (b) Ra =450000, and w� = 20, 30, 50, 60, 70, 75, 80,
100, 160, 170, 175, 180, 200, 210, and 215; (c) Ra = 600000, and w = 20,
60, 70, 72, 75, 80, 120, 150, 180, 190, 195, 240, 250, 260, and 275

Fig. 8. The temperature fields for grid 241 · 49 when t = 200. Where,
for Ra = 150000, 450000, and 600000, the isotherms for values of
Q changed from –0.4 via 0 to 0.4 with an increment 0.1. are shown
in (a), (b) and (c), respectively

Fig. 9. The evolution of (a) overall
Nusselt numbers Nuav; and (b) The
overall kinetic energy Eav for several
values of Ra
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that there are 4 cells appears in case of Ra = 14000 would
be a forced analogy, since the two cells accompanying the
two large cells in the central region are rather small and
weak. The cell distance for Ra = 11000 is 2.893. But for Ra
= 14000 it is 3.073. The cell distance for the pair of large
and small cells closed mutually is just 2.0. The relation of
cell number to Rayleigh number is again illustrated in
Table 3. The cellular pattern determines the characteristics
of isotherms shown in Figure 6, where the relevant Q va-
lues are changed from –0.4, via 0 to +0.4. From Figure 6, it
was seen that in the flow region where the cells are present,
there are little background thermal stratification in the
flow. This is in good consistent with the result reported in
references [13] (Korpela et al. 1982).

Further increasing Rayleigh number, and conducting
numerical simulation of the problem considered, it was
found that the cell numbers increased as Rayleigh number
beyond 150000. This can be observed from Figure 7 which
shows that too large heat flux leads to cellular decomposi-
tion when Ra ‡ 15000. Figure 8 shows the corresponding
isotherms, from which the intrinsic property of negative
symmetry can also be observed. There are 4, 7, and 8 cells for
the three values of Ra, The shape of cells has been deformed
and have become far different from the shape of those
emerged at lower Rayleigh number. These cells cause the
effect of isotherm-stretching, and this can be seen from
Figure 8 (a), (b) and (c).

3.2
Nusselt number and kinetic energy
The time variation of overall Nusselt numbers
ðNuav ¼ �1=A

R A
0 @H=@y dzÞ for several values of Ra

beyond the critical Rayleigh number (about 7000) is shown
in Figure 9 (a), while the overall kinetic energy
ðEav ¼ 1=2

R A
0

R 1
0 ðv2 þ w2Þdy dzÞ is illustrated in Figure 9

(b). The overall Nusselt numbers for each Rayleigh num-
ber drop quickly at the initial time period, via its minima,
then increase to a steady state. In the time period, the
overall Nusselt number changes significantly. But this is
really a small percent of the gross time range, say about
10%. Similarly, in the initial time period, the overall
kinetic energy Eav also emerge evident variation.

The heat transfer across the tall cavity by natural con-
vection is dependent on the flow-pattern. This was found
from the wavy distribution of local Nusselt numbers
shown in Figure 10 when t = 200.

The result of comparison with experiment is shown in
Figure 11. The relevant values are shown in Table 3. Ex-
perimental results were given according to the correlations
of ElSherbiny et al. A good agreement was found for
Rayleigh number less than 100000, beyond which the
discrepancy increases with Ra. But the maximum dis-
crepancy at Ra = 600000 is about 18%.

4
Conclusions
Numerical study of the transient laminar natural convec-
tion of air in a tall cavity with an aspect ratio of 16 was
presented, where the projection method III (PmIII) was
implemented in a very fine staggered grid system. The
cellular pattern was found merely in case of suddenly
heating mode. The number of cells was found to be
dominated by Rayleigh number. There are a closed region
and an open region of Rayleigh number, in which
numerical simulation in terms of PmIII can provide mul-
ticellular flow pattern. The two regions are given by

Fig. 10. The local Nusselt numbers along the hot wall for several Ra

Fig. 11. The comparison
between the overall Nusselt
numbers from current calcu-
lation and the measured
results
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Ra 2 ½7000; 20000� and Ra ‡ 118000. The cell distance ap-
peared at critical Rayleigh number is 2.0 which is coin-
cident with the experimental finding for Bénard problem.
However, in the remained region, single central cellular
pattern should be emerged. In the open multicellular re-
gion of Ra, the overall Nusselt number obtained by nu-
merical simulation has much large deviation from the
measured data. However, the maximum deviation for
overall Nusselt number from experimental data is less than
6% when Ra £ 100000.
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