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Abstract: This paper presents a first-order multi-class model for illustrating freeway traffic dynamics, especially 
regarding the temporal and spatial variation of both densities and flow rate along freeway segments without the 
disturbance from ramp flows.  The proposed macroscopic model is grounded on the assumption that freeway 
traffic may consist of multiple classes of drivers who, charaterized with their unique speed –density relation, are 
likely to react differently under the same driving environment.  The distribution of various classes of drivers and 
their differences in responding to perceived driving conditions may contribute significantly to the observed 
freeway traffic dynamics that remains to be better explained by existing traffic flow theories.   The numerical 
solution and simulation results reported in this study, however, indicate that our proposed  first-order multiclass 
model offers the potential to explore the complex interactions between freeway drivers and their collective 
impact on traffic flow patterns. 

INTRODUCTION 

Recognizing the limitations of the existing traffic flow theory, traffic researchers over the past several decades 
have devoted considerable efforts on developing a reliable model that can realistically capture the complex 
traffic flow dynamics.   One of the primary research directions is to replace the first-order hydrodynamic traffic 
model with a high-order difference or differential system of equations. For example, Zhang (1) has presented a 
new continuum traffic theory and investigated its wave properties.  Helbing et al. (2) have developed a traffic 
flow simulator, called MASTER, based on gas-kinetic traffic equations.  They have also developed a new class 
of molecular-dynamics-like microscopic traffic models based on times to collisions (Helbing, et al., (3)). 

Some researchers in recent years have attempted to extend the high-order macroscopic model to 
incorporate multiclass drivers in traffic flow formulations. Examples of pioneering studies along this line are due 
to Nagatani (4)  Hoogendoorn and Bovy (5).  While the former have characterized the discrepancy between the 
car-following behavior of various types of drivers with their delay time, the latter has employed the gas-kinetic 
equations to model the multiclass traffic flow interactions. A concise review of research developments along this 
line can be found in the work of Kuhne and Michalopoulos (6). 

Despite the significant progress on high-order macroscopic traffic flow models, their complex 
formulations and the number of parameters to be calibrated may degrade their potential for field applications.  
Thus, instead of developing high-order mathematical traffic relations, some researchers suggested that the effort 
should be devoted to capturing the discrepancy of driver behavior in a macroscopic model formulation (Daganzo, 
(7)).  A simple fist-order mathematical model may be sufficient for capturing traffic flow dynamics if the 
response of different types of drivers and their collective impacts on the traffic conditions have been properly 
taken into account.  An example of studies along this line can be found in a two-phase traffic flow model 
proposed recently by Zhu and Wu (8) in which the free-flow speed in a first-order macroscopic traffic model is 
assumed to vary across driving populations. 

In fact, a recent empirical study by Cassidy and Mauch (9) has also concluded that under congested 
queued conditions, there exists a well–defined relation between the flow rate and the cumulated number of 
vehicles on a freeway segment, and the first-order hydrodynamic traffic flow theory is sufficient for illustrating 
the queue evolution.   Daganzo (10-11) has proposed a behavioral theory for multilane freeway traffic flows, and 
argued that such a descriptive model is sufficient for development of computer programs.  

Recently, Wong et al. (12) have extended the traditional LWR traffic theory (Lighthill and Whitham, 
(13); Richards, (14)) with the Lax-Friedrichs scheme, and claimed that their extended model can explain some 
complicate phenomenon that cannot be captured with the LWR model. 

 
This study presents our recent work along the same line, that is, a first-order macroscopic traffic flow 

model for multiclass drivers.  The model presented hereafter intends to overcome some limitations of the LWR 
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model without using complex high-order formulations.  The primary objective of this study, in fact, is similar to 
the recent work by Wong et al., but with a different modeling methodology and a potentially more effective 
numerical method to solve our proposed multiclass traffic flow model.  With a simple first-order formulation, 
our proposed model is capable of illustrating some vital freeway traffic dynamics such as the commonly 
observed oscillations of flow rate and density along a freeway segment over time, even without the disturbance 
of ramp flows and having uniform initial traffic conditions.  The temporal and spatial variation of flow rate and 
density based on our proposed model will vary with different distributions of driving populations in the traffic 
stream.  

TRAFFIC MODEL FOR MULTI-CLASS DRIVERS  

For convenience of presenting the core logic, our proposed model is developed with the following two 
main assumptions: 

- The effects of ramp flows, viewed as interactions between the mainline traffic stream and external 
environments, are not included in the formulations. 

-  Driving populations of each mainline traffic stream can be divided into several distinct classes, and 
their responses to the traffic condition are governing by the global freeway density, their own preferred free-flow 
speed, perceived jam density, and most importantly their unique speed-density relation. 

Note that the existence of multiclass driving populations is evident from the commonly seen multiple 
platoons in the freeway traffic stream, where drivers with similar behavioral preferences and vehicle conditions 
tend to react similarly and travel in groups under the same traffic condition.  

Thus, let 0u  be denoted as the free-flow speed, and mρ  be the density, from the first order 

macroscopic traffic dynamics, the governing equations for the freeway traffic system can be written as 
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If t  and x  use the units of 0/ ux∆ , and x∆ . Under the assumption of having three classes of driving 

populations, one can present the supplementary traffic flow relations as follows: 
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Where ifv , and in  are the free-flow speed and the index of speed-density relation for the i-th class of drivers. 

Note that when drivers in each class share the same free-flow speed, it indicates that there exists one class of 
drivers who share the same fundamental relationship (1). When the parameter is set as 1, it means that a linear 
Greenshield model is used to reflect the speed-density relation (15). 
 

By using the normalized optimal density, ib  with respect to the jam density (at bi , the flow rate equals 

the roadway capacity), it is evident that the flow derivative with respect to density should be vanished at 

ii b=ρ .  Hence, we can have the expression for ib  as a function of in : 
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Note that for three classes of driving populations, the governing equations should generally have three 
characteristic values corresponding to their respective characteristic directions along which infinitesimal 
disturbances propagate (16). To ensure that the characteristic values are real, the supplementary relations should 
be properly selected.  Under properly defined initial and boundary conditions, one shall be able to have solutions 
for the governing equation regardless of the employed numerical method. In this proposed multiclass freeway 
traffic model, for convenience, we assume that the free-flow speed has a priori assigned value that varies with  
the index of speed-density relationship.  
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To evaluate the properties of our proposed model, we have solved it with the Total Variation 
Diminishing (TVD) method due to Yee-Roe-Davis (18-20), and presented the numerical results of several 
experimental traffic scenarios in the ensuing two sections. 

NUMERICAL SOLUTIONS FOR THE PROPOSED MODEL 

The aforementioned governing equations for our proposed multiclass traffic flow model can be written 
in the following vector form  
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where the  density vector T),,( 321 ρρρ=ρ  is accompanied with its corresponding flux TFFF ),,( 321=F  

whose components are given by  
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where the superscript T  denotes the matrix transposition. According to the velocity measure given in the 

foregoing section, for the flux component 2F , we have 2,fv . Thus, the Jacobian matrix for equation (4) is 

















=


















=

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

333231

232221

131211

FF

FF

FF

  

  

  

  

  

  

3

3

2

3

1

3

3

2

2

2

1

2

3

3

2

2

1

1

aaa

aaa

aaa

F

F

F

ρρρ

ρρρ

ρρρ

A

                                       (6) 

for which the characteristic equation is 
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with the coefficients 
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Note that Atr means the trace of matrix A , and ijA  is the algebraic complement of the elements ija  of the 

determinant || A , respectively. Expressing p and 1p in terms of the coefficients in equation  
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 for 0  and  ,032
1 <<+ ppp , from the handbook of mathematics (12), the three real roots of the 

characteristic equation can be given by 
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where s and θ are given by 
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For convenience of using the TVD method described below, the roots are arranged in a growing order. That 
means the characteristic values of the traffic system can be written as 

32132133211    ),,,max(   ),,,min( λλλλλ ≤≤== yyyyyy                      (12) 

With the Jacobian matrix, we obtain the right characteristic matrix in the following form: 

















==

333231

232221

131211

321

    

    

    

],,[

rrr

rrr

rrr

rrrR

                                                     (13) 

Where the elements can be written as 
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The reverse of R  is denoted by T),,( 321 lllL = . With these notations, according to the TVD algorithm 

proposed by Yee-Roe-Davis, and expressing the time level as m , we have 
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)(zQk is the coefficient of viscous term, which has the form 
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with the parameter kε . While  the minimum modification function is given by 
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where zsgn  is the sign function whose value is 1,0, or -1, if z  is positive, zero, or negative. The minimum 
modification function provides monotonic treatment for the numerical solution. 

NUMERICAL RESULTS AND DISCUSSIONS  

The section presents the numerical solutions of the above the multi-class model based on three classes of 
driving populations.  Initial parameters for performing the numerical analyses are summarized below: 

- Three modes, distinguished by their ratios to the optimal density, have been taken into account in the 
numerical simulation and are presented in Table 1. Note that the global density is uniform but 

defined as the sum of densities for all driving classes. The initial distribution of 1ρ  was performed 
with a computer-based random generator from an Erlang process of order 5 as shown in Figure 1.  
The initial distributions of the 2-nd and the 3-rd classes are assigned by using parameter β  defined 
in Table 1. 

- The free-flow speed of k-th class is given by the expression in Table 1. The expression implies that 
the road capacity is a constant for each class of drivers, and the free-flow speed corresponds to an 
optimal density 0.5. 

-  The parameters of speed-density relations )3,2,1,( =ini  for these three driving classes are 

evaluated by using equation (3), where the speed unit u0 is set as a unity. 

-  The parameters )3,2,1,( =kkε  appear in kQ  were chosen as 0.025 at which the numerical 

viscous effect is negligible. 

 

Note that under the assumption of having a uniform initial global density, the traditional LWR traffic 
model will naturally lead to the conclusion of always having a time-independent global density ρ .   This is 
certainly inconsistent some field observations.  However, with our proposed model, as shown in the ensuing 
presentation of numerical results, seems to offer the potential to better explain the traffic dynamics such as the 
observable oscillations of traffic densities and flow rates on freeway segments even without including the 
disturbance from ramp-flows (6). 

Table 2 represents the time averaged and root of mean square (rms) values of the data sequences for 
flow rate and densities occurred at x=100. The first column indicates those five cases in the numerical 
experiment. The time averaged flow rate is seen to be mode dependent, but the peak value of the averaged flow 
rate is found to have a peak when the initial density (ID) is 0.5.  

The rms value is of course a measure of oscillation magnitude for the simulated data. The rms of flow 
rate can be seen from the 3-rd column of Table 2. It varies with the mode choice, and has a largest value in an 
order of about 10-3 as the ID is 0.3. However, the mode dependence of rms value is more significant when ID 
value is less than 0.5. For example, for density 0.3, from the 3-rd row of Table 1, the rms of flow rate under 
mode I is 1.81×10-3; for density 0.4 it equals 1.93×10-3.  But under mode III, their rms value is 2.32×10-3 . 
The rms of flow rate approaches its minima as ID value is set at 0.5. The rms of global density is, in general, less 
than that of flow rate (see column 4 of Table 1). However, from the data shown in the 5-th and 6-th columns, it is 
clear  that the rms value of the fractional density is almost mode independent. 
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The evolution of global density at x=100 for ID being assigned as (a) 0.3, (b) 0.5, and (c) 0.7 is given in 
Figure 2, in which the dash-dotted, dashed, and solid curves correspond to modes I, II, and III, respectively.  
Clearly, density oscillations happen as ID is taken as 0.3, at which the oscillating magnitude is comparable to 
that of the initial waves. For over saturated traffic, the initial irregular waves are largely suppressed. These 
oscillations come from the initial heterogeneous distributions of those densities of multi-driver classes, even 
though the initial global density is set to be uniform along the entire freeway segment.  

The evolution of densities at x=100 for the first and second classes for ID being assigned as (a) 0.3, (b) 
0.5, and (c) 0.7 can be viewed from Figure 3, where all curves exhibit similar relations between different modes 
as in Figure 2. The variation of vehicular density for the second class shows a reverse trend to the variation of 
the first class.  Thus, when a valley of the 1-st class density curve occurs, there exists a peak density value for the 
2-nd class.  Such coherent traffic states are due to the assumed initial conditions. For ID being assigned as 0.5, 
the choice of different modes has little impact on evolution of the density pattern. 

To show that the proposed model has the property of capturing the density and flow rate oscillation, we 
have employed power spectra recommended in the literature (21) to analyze the numerical results.  As given in 
Figures 4 (a) and (b), one can observe the primary oscillating frequencies from the exhibited patterns.  The 
results in Figure 4 correspond to those in Figures 2, and 3, and the data is selected at x=100 for mode III.  The 
values of the two primary frequencies are given in Table 3.   Clearly, the choice of different modes has some  
impacts on the primary frequencies when the ID is set to be 0.3.  It is the main frequency with a larger power 
spectrum that dominates the oscillating performance.  

From Table 3, it can be seen that when the initial density is less than 0.6, the two primary frequencies 
decrease with the initial density. For ID at 0.7, it has the same primary frequencies as that in the case which has 
the initial density of 0.6. For example, for Mode I, from the 2-nd column of Table 3 where ID is 0.3, the primary 
frequencies f1, and f2 have the values of 7.58×10-3, and 1.834×10-2, respectively. 

Note that by setting the dimensional value of Δx at 180m, the free-flow speed as 30m/s, and the time 
unit to be 6s, in the case of ID equal to as 0.3, the dimensional primary periods of traffic oscillation are 13.32mn, 
and 5.45mn (i.e. 6/f1/60, and 6/f2/60). Such a period of traffic oscillation can be found in the real-world data from 
Paris (22), for Germany (6), and  San Francisco (1).  

 To see traffic flow pattern in terms of global density, the contours of traffic density under mode III for 
the initial density of (a) 0.3, (b) 0.5, and (c) 0.7 are illustrated in Figure 4.  These patterns indicate not only that 
the evolution of solid curves in Figure 2 are really observed at x=100, but also that the traffic wave propagates 
according to the orientation of the given density structures. These contours, labeled by the initial density, can 
better capture the traffic pattern.   One can also see from Figure 4 that the traffic waves propagate downward 
along the steep and diminished directions (see, parts (a) and (b) of Figure 4). However, the propagation direction 
for the case of density equal to 0.7 is clearly going upward (see part (c) of Figure 4). These contours exhibit a 
dense spacing at the early stage of density evolution, and become coarse at the later stage. The evident wrinkles 
and local structures occur particularly for the cases of density equal to 0.5, and 0.7, as shown in parts (b) and (c) 
of Figure 4. 

In summary, the numerical results shown in the above figures and tables are consistent with some real-
world observations (1, 6, 22), and offer a plausible explanation for observed traffic density oscillation on 
freeway segments without external disturbances. Our proposed multi-class macroscopic model with its simple 
first-order relation seems capable of illustrating such vital traffic flow dynamics. 

CONCLUSIONS 

The paper has presented a first-order multiclass macroscopic traffic flow model and its numerical 
solutions. The proposed model uses the free-flow speed and the speed-density relation to characterize each class 
of drivers. Numerical analyses with the TVD method have indicated that by taking into account the behavioral 
discrepancy of various driving populations our proposed model is capable of illustrating some vital traffic flow 
dynamics, i. e., if the density is less than its optimal density, a freeway segment with an initially uniform global 
density and flow rate may exhibit a pronounced oscillating pattern even without any ramp flow disturbance.  
This is likely due to the heterogeneous distributions of different driving populations who may react differently 
under identical traffic conditions. 

It, however, should be mentioned that the impact of multiclass driving populations on the traffic 
dynamics is a quite complex issue, and much remains to be explored along this research direction.  Our on-going 
work has focused on the interrelations between the number of driving classes and the dynamic properties of the 
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resulting traffic flows.  The impact of ramp flows on the stability and the variability of the global traffic patterns 
will also be explored. 
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NOMENCLATURE  

A =Jacobian matrix; 
|A| = determinant of matrix A; 

ijA  =algebraic complements for matrix element aij ; 

aij =elements of A; 
bi = ratio of optimal to jam density; 
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c1, c2, c3 =coefficients of characteristic equations; 
F =flow vector; 
gk = given by Eq(18); 
L =left characteristic matrix; 
lk =left characteristic vector for root kλ ; 

ni =index of speed-density relation, see Eq. (2); 
p = intermediate coefficients, see Eq. (9) ; 
p1 = see Eq(9); 
Qk =coefficients of numerical viscous term; 
q = flow rate (=F1+ F2 +F3) ; 
q0 = road capacity; 
R = right characteristic matrix ; 
rk =right characteristic vector for root kλ ; 

rms = root mean square; 
s =defined in Eq.(11) 
t = time; 
tr =trace, i.e. the summation of the diagonal elements of a 

matrix; 
ui = defined by Eq.(2); 
vf,i = free speed for class I; 
yk =roots of characteristic equation. 
x = space; 
z = intermediate variable. 
Greek Symbols 

kα  = given by Eq. (18); 

k∆  =  given by Eq. (15); 

kλ  =k-th characteristic value; 

ω  =ratio of time to  spatial step; 

kψ  = given by Eq. (17) 

ρ  = density vector ; 
ρ  =  traffic density; 

kρ  =fractional density for drivers’ class k; 

mρ  = jam density; 

Superscripts 
m = time level; 
T = transposition of a matrix 
Over 
bar 

= means time average. 
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Table 1. The initial parameters used in numerical simulation 

kb  

Mode I:    0.49, 0.47, 0.45, for k=1,2,3 
Mode II:   0.50, 0.48, 0.46, for k=1,2,3  
Mode III:  0.52, 0.50, 0.48, for k=1,2,3 

kfv ,  )]1([25.0 kn
kk bb −=  

kn  Evaluated by Eq.(3) 

kε  0.025, for k=1,2,3 

β  =+= )( 322 ρρρ 75%, for t=0. 

 

 

Table 2. The average flow rate and rms values of flow rate and densities for several 

0| =tρ  at 100=x  under different modes. 

0| =tρ  q  
qσ  ρσ  

1ρσ  
2ρσ  

Mode I 
0.3 0.882 1.81×10

-3  8.05×10
-4  6.93×10

-3  6.38×10
-3  

0.4 0.978 5.02×10
-4 2.68×10

-4 1.01×10
-2 8.10×10

-3 
0.5 0.996 1.11×10

-4 0.70×10
-4 1.35×10

-2 1.04×10
-2 

0.6 0.936 3.94×10
-4 2.94×10

-4 1.66×10
-2 1.32×10

-2 
0.7 0.803 6.33×10

-4 3.79×10
-4 1.61×10

-2 1.29×10
-2 

Mode II 
0.3 0.868 1.93×10

-3  8.53×10
-4  6.84×10

-3  6.32×10
-3  

0.4 0.973 5.99×10
-4 3.22×10

-4 1.00×10
-2 8.06×10

-3 
0.5 0.998 0.67×10

-4 0.45×10
-4 1.36×10

-2 1.03×10
-2 

0.6 0.945 3.85×10
-4 2.76×10

-4 1.66×10
-2 1.32×10

-2 
0.7 0.816 6.31×10

-4 3.78×10
-4 1.62×10

-2 1.30×10
-2 

Mode III 
0.3 0.838 2.32×10

-3  10.2×10
-4  6.86×10

-3  6.43×10
-3  

0.4 0.959 8.39×10
-4 4.57×10

-4 0.99×10
-2 8.20×10

-3 
0.5 0.999 0.34×10

-4 0.18×10
-4 1.36×10

-2 1.02×10
-2 

0.6 0.960 3.54×10
-4 2.33×10

-4 1.66×10
-2 1.31×10

-2 
0.7 0.840 6.11×10

-4 3.89×10
-4 1.63×10

-2 1.31×10
-2 

 
 

 
Table 3. The primary frequency and period of the density sequence at 100=x   
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0| =tρ  0.3 0.4 0.5 0.6 0.7 

Mode I 
f1 7.508×10

-3 6.675×10
-3 5.008×10

-3 4.175×10
-3 4.175×10

-3 
f2 1.834×10

-2 1.502×10
-2 1.335×10

-2 1.002×10
-2 1.085×10

-2 
Mode II 

f1 7.508×10
-3 6.675×10

-3 5.008×10
-3 4.175×10

-3 4.175×10
-3 

f2 1.752×10
-2 1.502×10

-2 1.252×10
-2 1.002×10

-2 1.002×10
-2 

Mode III 
f1 6.675×10

-3 6.675×10
-3 5.008×10

-3 4.175×10
-3 4.175×10

-3 
f2 1.669×10

-2 1.502×10
-2 1.252×10

-2 1.002×10
-2 1.002×10

-2 
 
 

 
 

x

ρ 1

0 50 100 150 200

0.05

0.1

0.15

0.2

0.25
0.3

0.4
0.5

(a)

x

ρ 1

0 50 100 150 200

0.1

0.15

0.2

0.25

0.3

0.35
0.6

0.7

(b)
 

Figure1. Initial distribution of density of trucks which is  given by a computer based random generator regarding 

Erlang process with order 5. 
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Figure 2. Evolution of global densities for freeway traffic for initial density assigned as (a) 0.3, (b) 0.5, and (c) 

0.7 under diffrent modes. 
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Figure 3. Evolution of densities of  the first and second classes for freeway traffic for initial density assigned as 
(a) 0.3, (b) 0.5, and (c) 0.7 under different modes. 
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Figure 4.  Power spectra of densities and flow rate for the case of initial density 0.5 for the three classes under 

mode III. 
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Figure 5. Contours of global density, where the initial densities (a) 0.3, (b) 0.5, and (c) 0.7 are used in the 

labeling  contours under mode III. 
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