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• Visco-elasticity effect on traffic flows.
• Self-organization is a crucial feature in traffic flow pattern formation.
• Optimization of traffic control regulations is necessary.
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a b s t r a c t

This letter reports traffic flow sensitivity to visco-elasticity, with the traffic flow modeling briefly
described at first and then used to do traffic flow simulations whose results can reflect the properties
of spatial–temporal evolution of ring traffic flow. It reveals that visco-elasticity plays crucial role in
formation of traffic flow patterns, implying that self-organization of traffic flow is crucial in determining
traffic flow status.

© 2016 The Author(s). Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and
Applied Mechanics. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
S

Traffic flows have been extensively studied due to its significant
impacts on work and life in modern society. Many models
have been developed to ascertain traffic flow characteristics and
understand intrinsic properties of traffic wave propagation, among
which is vehicular mass conservation based Lighthill, Whitham,
and Richards (LWR) model [1,2], probably the simplest one being
able to capture some crucial flow features onhighways, and predict
traffic shock waves with relatively steep wave fronts [3]. Although
results of LWR traffic modeling are not completely favorable for
predicting traffic waves spreading on highways, its extensions can
predict traffic hysteresis [4], evolution of density waves [5], and
critical transition of bottleneck in traffic flows [6].

In traffic modeling, further involving momentum conservation
leads to the occurrence of high-order models, among which are
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the Euler model [7], the gas-kinetic-based model [8,9], the cluster
effect model [10], and the generic model [11–13]. High-order
models can explain the vehicular stop and moving phenomena
and predict traffic wave spreading successfully. Although a critic
comment [14] has deeply suspected high-order models, there
are still many remarkable applications [15–17] and further
developments [18–28].

In traffic systems, spatial–temporal pattern formations have a
surprisingly rich spectrum, which can be described by the car-
followingmodels, the cellular automatonmodels [29–31], the gas-
kineticmodels, or the fluid-dynamical models [32]. Usingmethods
in statistical physics and nonlinear dynamics to self-driven many-
particle systems, Helbing has answered some flow questions [33].

As soon as instantaneous traffic flow rate q is not equal to
equilibrium flow rate qe, time headway will automatically adjust
to approach 1/qe [34]. By introducing traffic viscosity and pressure
in some high-order models [10,35], this self-organization of traffic
flow has been considered. In congested traffic flows where traffic
density is larger than saturation density ρs(=ρm/e) as shown in
Fig. 1, it is common to observe instantaneous variation of flow rate.
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Fig. 1. Fundamental diagram used in Ref. [21].

The interaction of traffic flow waves is more intensive, causing
the occurrence of a synchronized flow regime or a jam existing
regime [36]. However, the flow is homogeneous and stable for the
denser traffic flow where traffic density is larger than the second
critical density ρc2 [37].

Since relaxation and elastic processes are intrinsically related
from points of view in fluid mechanics, relaxation time has been
used for denoting external force of traffic flows, visco-elastic traffic
flowmodels have some grounds of fluid mechanics. For simplicity,
we assume: (1) ramp flow effect is negligible; (2) road capacity
is insensitive to vehicular drivers; (3) traffic flow satisfies linear
viscoelastic constitutive relation. The main reason for the 3rd
assumption has been reported in Ref. [22].

Let qe be traffic flow rate under equilibrium flow state, using
traffic fundamental diagram as shown in Fig. 1, it has the form

qe =


vfρ for ρ ≤ ρ∗,
−cτρ ln(ρ/ρm) for ρ∗ < ρ ≤ ρm.

(1)

As reported previously [27], traffic pressure p is proportional to
density,with the proportional coefficient being the square of traffic
sound speed c2. Using jam density and jam pressure of traffic flow,
p has the form

p = pm(1 − α)(ρ/ρm)/[1 − α(ρ/ρm)], (2)

where

ρ∗ = ρm exp(−vf/cτ ) = ρm[1 + X(vf)/l]−1

and

cτ = vf/ ln[1 + X(vf)/l],

as shown in Fig. 1. Note that α = lρm, l is average vehicular length,
X(vf) is braking distance depending merely on free-flow speed vf.
The fundamental diagram is driver-dependent [23]. Clearly, it has
significant impact on traffic road operation [38]. While the jam
pressure is

pm = c20ρm, (3)

where

c20 =
(1 − αρ∗/ρm)ρ∗/ρm

2(1 − ρ∗/ρm)
v2
f (4)

with the sound speed in traffic flows given by

c = c0
√
1 − α/(1 − αρ/ρm). (5)

As expressed by Eq. (5), traffic sound speed is proportional to free
flow speed vf. To express relaxation time τ explicitly, supposing
(c · τ) = const, and denoting traffic jam relaxation time by τ0 =

l0/cτ with traffic length scale l0, we have [27]

τ = τ0(1 − αρ/ρm)/
√
1 − α. (6)
Table 1
Traffic operation parameters on the ring road.

vf (km·h−1) ρm (veh·km−1) X(vf) (m) l (m)

110 150 50 5.8

Obviously, the relaxation time τ decreases linearly with traffic
density, implying that equilibrium flow state can play a more
important role under congested flow conditions, as external traffic
force is explicitly τ -dependent.

Therefore, the governing equations of viscoelastic traffic flows
are (see also in Ref. [27])

ρt + qx = 0,
ρ(ut + uux) = R (7)

with R satisfying the expression

R = ρ(ue − u)/τ − c2ρx + [(2Gτ)ux]x, (8)

where x is space coordinate, G is the modulus of traffic flow
elasticity, 2Gτ = ρν, with ν denoting the kinematic viscosity of
traffic flow. The inclusion of elasticity allows the acceleration speed
varyingwith viscoelastic dependent force, implying the traffic flow
model has intimately involved the influences of neighborhood
traffic operations.

To verify the proposed model briefly described above, numeri-
cal tests are carried out to show the visco-elastic effect on ring road
traffic flows. The road length is assumed to be 860l0, with a length
unit l0 = 160 m, and a velocity scale given by v0 = vfρ∗/ρm ≈

3.176 m·s−1, and time scale t0 = l0/v0≈50.377 s. The initial den-
sity condition is given by

ρ(0, x) =


1.0 for x/l0 ∈ [429, 431],
1/3 otherwise (9)

with q(0, x) = qe(ρ(0, x)). The flow on the ring road is explicitly
congested, as traffic density in some regions of the road is higher
than normalized saturation density ρs/ρm = 1/e. The numerical
tests use fundamental diagram given by Fig. 1, with traffic oper-
ation parameters on the ring road given in Table 1. It is assumed
that average vehicular length l is 5.8 m, jam density is 150 m, free
flow speed is 110 km·h−1, the braking distance is 50m. If the traffic
length scale l0 is fixed at 160 m, the relaxation time τ0 = l0/cτ is
0.2353t0 ≈ 11.854 s. To seek the viscoelastic impact on ring traffic
flows, viscoelastic parameter γ = Ĝτ0 =

2G(τ0v0)

l20
·

t0
q0

is assumed

to be 0.03125, 0.0625, and 0.125, respectively.
The comparison of ring traffic patterns is illustrated in

Fig. 2(a–c), where the ring traffic density contours are shown in
flood-type form and labeled by values of 0.309, 0.35, 0.618, and 0.7,
respectively. This means the density in the blue region is below
0.309, in the red region is larger than 0.7. While traffic density
in the cyan region has a value in the range of [0.309, 0.35], with
the green and yellow regions being relevant to the density range
[0.35, 0.618], and [0.618, 0.7], respectively. FromFig. 2(a–c), it can
be seen that with the increase of viscoelastic parameter γ , self-
organization of traffic flows increases. Since the flow pattern has
become more regular as a result of interaction of traffic shock and
deflation waves, it reveals that self-organization can impact traffic
flow pattern formation significantly.

To illustrate traffic sensitivity to visco-elasticity, distributions
of time-average based mean density and speed are given in
Fig. 3(a–b), where green-solid, blue-dash, and dash–dot black
curves are relevant to γ = 0.03125, 0.0625, and 0.125, respec-
tively. The mean traffic density and speed on the ring road are
both clearly sensitive to parameter γ , a smaller γ value can lead
to a larger variation range of traffic density and speed. As seen in
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Fig. 2. (Color on online) Comparison of ring traffic density contours in the t − x/l0 plane, (a) γ = 0.03125, (b) γ = 0.0625, and (c) γ = 0.125. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Distributions of (a) mean density and (b) mean speed on the ring road. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
Fig. 4. Distributions of (a) density and (b) speed fluctuations on the ring road.
Fig. 5. Comparison of traffic speed with existing measured data at x/l0 = 430, (a) γ = 0.03125, (b) γ = 0.0625, and (c) γ = 0.125. The observation data are obtained from
Ref. [39], and the jam density for normalization is supposed to be 200 veh·mile−1 .
Fig. 2(a–c), self-organization represented by γ , can bring about sig-
nificantly difference of traffic wave structures. The traffic wave in-
teraction has resulted in oscillated distributions of mean density
and speed, with the oscillation mode being γ -dependent.

The distributions of density and speed fluctuations are shown
in Fig. 4(a–b), where the so-called fluctuation is just time-average
based root mean square (RMS) value of some variable. Totally,
the smaller the value of visco-elastic parameter γ , the larger RMS
values are for traffic density and speed. Since the distributions
intrinsically depend on the traffic wave propagation on the ring
road, at a given spatial point, the γ induced difference of RMS
values of density and speed has some uncertainty.

As shown in Fig. 5(a–c), the instantaneous speed u recorded at
the section of x = 430 plotted as a function of density is labeled
by green alphabets a, b, and c, respectively. The instantaneous
equilibrium speed ue at the section of x = 430 determined
by fundamental diagram Eq. (1) is labeled by non-filled blue
triangles, with existing measured data [39] labeled by non-filled
black squares. The comparison of speed–density relation at a given
observing road section with measured data, not only shows the
traffic sensitivity to visco-elasticity γ , but also reflects to some
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extent the potential of viscoelastic traffic flow model, and the
reliability of simulation results.

The viscoelastic traffic model introduced above has potential in
traffic flow simulations. Numerical tests revealed that viscoelastic
sensitivity of traffic flows is certainly larger, indicating that self-
organizing traffic flows play a significant role in flow pattern
formation, and it is crucial in determining traffic flow status.
This suggests that optimization of traffic control regulations is
necessary in reality as traffic flow has become a key feature of
modern society.
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