
N
T

N
U Multiple hypothesis testing - recent

developments and future
challenges
Ingelin Steinsland

ingelins@math.ntnu.no

Norwegian University of Science and Technology

Multiple hypothesis testing - recent developments and future challenges – p.1/28

http://www.ntnu.no


N
T

N
U

Outline
Single hypothesis testing

Multiple hypothesis testing
Quantities and issues
False discovery rates

Future challenges
Within false discovery rates.
Multiple hypothesis tests, the right tool?
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Single hypothesis testing, example
Typical question: Does treatment A give the wished
effect?
Hypothesis:
H = 0: Non or negative effect.
H = 1: Positive effect
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Single hypothesis testing, example
Typical question: Does treatment A give the wished
effect?
Hypothesis:
H = 0: Non or negative effect.
H = 1: Positive effect

Collect data.

IF the collected data is very unlikely given H = 0;

H = 0 rejected and H = 1 accepted.

Treatment A has positive effect.

ELSE

H = 0 accepted.

Treatment A does not have significant positive effect.
Multiple hypothesis testing - recent developments and future challenges – p.3/28
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Single hypothesis testing
Hypothesis test:

H = 0 : θ ∈ Θ0 versus
H = 1 : θ ∈ Θ1 (Θ0 ∩ Θ1 = ∅).

Test statistics: T (X), observed t.
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Single hypothesis testing
Hypothesis test:

H = 0 : θ ∈ Θ0 versus
H = 1 : θ ∈ Θ1 (Θ0 ∩ Θ1 = ∅).

Test statistics: T (X), observed t.

Rejection region: Γ
If t ∈ Γ reject H = 0.
If t /∈ Γ accept H = 0.
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Single hypothesis testing

Γ

α

f T
|H

=
0

t

Rejection region: Γ
If t ∈ Γ reject H = 0.
If t /∈ Γ accept H = 0.
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Single hypothesis testing

Γ

α

f T
|H

=
0

t

Two types of errors:
accept H0 reject H0

H0 type-I error

H1 type-II error

Type I error (false positive), θ ∈ Θ0 yet t ∈ Γ.
Type II error (false negative), θ ∈ Θ1 yet t /∈ Γ
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Single hypothesis testing

Γ

α

f T
|H

=
0

t

Want to control type I error rate;
Pr(t ∈ Γ|H = 0),

and minimise type II error rate;
Pr(t /∈ Γ|H = 1).

Power = 1 − Pr(t /∈ Γ|H = 1).
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Single hypothesis testing

Γ

α

f T
|H

=
0

t

Significant level α = Pr(t ∈ Γ|H = 0).
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Single hypothesis testing

f T
|H

=
0

p−value(t)

t

Significant level α = Pr(t ∈ Γ|H = 0).

p-value = inf
Γ:t∈Γ

Pr(t ∈ Γ|H = 0)

Can use p-values as tests statistics.
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Single hypothesis testing

f T
|H

=
0

p−value(t)

t

Significant level α = Pr(t ∈ Γ|H = 0).

p-value = inf
Γ:t∈Γ

Pr(t ∈ Γ|H = 0)

Can use p-values as tests statistics.

Book: Testing Statistical Hypotheses E.L. Lehmann (1986)
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Multiple hypothesis testing
m hypothesis tests

H1 = 0 versus H1 = 1
H2 = 0 versus H2 = 1

Hm = 0 versus Hm = 1

Want to make simultaneous inference.

Rejection regions?

Multiple hypothesis testing - recent developments and future challenges – p.5/28



N
T

N
U

Multiple hypothesis testing
m hypothesis tests (H1, H2, . . . , Hm)

Want to make simultaneous inference.

Rejection regions?

Same as in single hypothesis testing?
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Multiple hyp. testing quantities
accept null reject null total

H = 0 U V m0

H = 1 T S m1

total W R m

Total number of misclassifications: V + T .
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Multiple hyp. testing quantities
accept null reject null total

H = 0 U V m0

H = 1 T S m1

total W R m

Compound error rates:
Family wise error rate: FWER = P (V ≥ 1)

Per comparison error rate:
PCER = E(V )/m

False discovery rate:
FDR = E(V/R|R > 0)P (R > 0)

Positive false discovery rate:
pFDR = E(V/R|R > 0)
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Multiple hyp. testing quantities
accept null reject null total

H = 0 U V m0

H = 1 T S m1

total W R m

Weak control: Only when m0 = m

Strong control: Holds for all m0 simultaneously.
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Example, fMRI
Now you see it, now you don’t: statistical and
methodological considerations in fMRI.
D.W. Loring et al., Epilepsy & Behavior 3 (2002)

Each voxel is tested if activation causes
difference.

Pure exploratory study of method and
significance level.

“(...), apparent random activation decreased as more conserva-

tive statistical approaches were employed, but activation in areas

considered to be functionally significant was also reduced”
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Example, fMRI

“(...), apparent random activation decreased as more conserva-

tive statistical approaches were employed, but activation in areas

considered to be functionally significant was also reduced”
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Multiple hyp. testing and microar-
ray experiments

DNA microarrays; method for measuring
expression levels for thousands of genes
simultaneous.

Purpose: Identify different expressed genes.

These can be further investigated using more
expensive methods.

Review article: Multiple Hypothesis Testing in
Microarray Experiments S. Dudoit, J.P. Shaffer &
J.C. Boldrick. Statistical Science 18 (2003).
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False discovery rate
Can accept some false rejections if they are
relatively few.

Controlling the False Discovery rate: A Practical
and Powerful Approach to Multiple Testing by Y.
Benjamini and Y. Hochberg, JRSS-B Vol 57
(1995).

FDR = E(V /R|R > 0)P (R > 0)

V : Number of false rejections.
R: Number of rejections.

FDR = E(V/R) with V/R ≡ 0 when R = 0.
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FDR, BH-procedure
Algorithm:

Find ordered observed p-values:
p(1) ≤ p(2) ≤ · · · ≤ p(m)

Calculate k̂ = max{k : p(k) ≤ α · k/m}

Reject null hyp. corresponding to p(1) . . . p(k̂)
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FDR, BH-procedure
Algorithm:

Find ordered observed p-values:
p(1) ≤ p(2) ≤ · · · ≤ p(m)

Calculate k̂ = max{k : p(k) ≤ α · k/m}

Reject null hyp. corresponding to p(1) . . . p(k̂)

Weakly controls FWER.
An improved Bonferroni procedure for multiple tests of
significance by R.J. Simes, Biometrica 73 (1986).

Strongly controls FDR, Benjamini & Hochberg (1995)

Also valid under some kind of dependences.
Benjamini & Yekutieli, Annals of Statistics Vol 29 (2001)
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Recent developments FDRs, outline
and key references

A direct approach to false discovery rate by J.D. Storey,
JRSS-B vol 64 (2002)

Fixed rejection region procedure
The q-value
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Recent developments FDRs, outline
and key references

Storey (2002)

Fixed rejection region procedure
The q-value

Strong Control, Conservative Point Estimation, and
Simultaneous Conservative Consistency of False Discovery
Rates: A Unified Approach by J.D. Storey, J.E. Taylor & D.
Siegmund, in press JRSS-B

Improved fixed significance level procedure
Some theoretical results
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Recent developments FDRs, outline
and key references

Storey (2002)

Fixed rejection region procedure
The q-value

Storey et al. (2003)

Improved fixed significance level procedure
Some theoretical results

The positive false discovery rate: A Bayesian interpretation
and the q-value by John D. Storey, accepted in Annals of
Statistics.

A Bayesian interpretation.
Classification theory.
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Recent developments FDRs, outline
and key references

Storey (2002)

Fixed rejection region procedure
The q-value

Storey et al. (2003)

Improved fixed significance level procedure
Some theoretical results

Storey (2003)

A Bayesian interpretation.
Classification theory.

Operating characteristics and extensions of the false
discovery rate procedure by C. Genovese & L. Wasserman,
JRSS-B (2002).

Benjamini & Yekutieli (2001)
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Positive false discovery rate
pFDR = E(V/R|R > 0)
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Positive false discovery rate
pFDR = E(V/R|R > 0)

Algorithm
Fix rejection region Γ
Calculate pFDR
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Positive false discovery rate
pFDR = E(V/R|R > 0)

Algorithm
Fix rejection region Γ
Calculate pFDR

Useful approach?
Set Γ from experience from similar
experiments.
Better power than FDR-procedure.
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Positive false discovery rate
pFDR = E(V/R|R > 0)

Algorithm
Fix rejection region Γ
Calculate pFDR

Useful approach?
Set Γ from experience from similar
experiments.
Better power than FDR-procedure.

Estimates π0 = m0

m

m: Number of tests
m0: Number of true alternative hypothesis
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Storeys estimaton of π0

Under the null-hyp pi-s ars uniformly distributed.
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Storeys estimaton of π0

Procedure
Choose a 0 < λ < 1.
Assume pi > λ from uniform distribution.

Use π̂0(λ) = W (λ)
(1−λ)m , where

W (λ) = #{pi > λ}.
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Choose a 0 < λ < 1.
Assume pi > λ from uniform distribution.

Use π̂0(λ) = W (λ)
(1−λ)m , where

W (λ) = #{pi > λ}.

Can choose λ from minimising MSE obtained
from bootstrapping.
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Storeys estimaton of π0

Procedure
Choose a 0 < λ < 1.
Assume pi > λ from uniform distribution.

Use π̂0(λ) = W (λ)
(1−λ)m , where

W (λ) = #{pi > λ}.

Can choose λ from minimising MSE obtained
from bootstrapping.

Much research currently done.

Has interest on its own.
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Fixed rejection region procedure
Calculate p-values p1, p2, . . . , pm.
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Fixed rejection region procedure
Calculate p-values p1, p2, . . . , pm.

Estimate π̂0(λ) and P̂ r(P ≤ t) by

π̂0(λ) = W (λ)
(1−λ)m

P̂ r(P ≤ t) = R(t)∨1
m

with R(t) = #{pi ≤ t} and W (λ) = #{pi > λ}
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Fixed rejection region procedure
Calculate p-values p1, p2, . . . , pm.

Estimate π̂0(λ) and P̂ r(P ≤ t)

For rejection region of interest [0, t], estimate
pFDR(t)

p̂FDRλ(t) =
π̂0(λ) · t

P̂ r(P ≤ t) · (1 − (1 − t)m)
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Fixed rejection region procedure
Calculate p-values p1, p2, . . . , pm.

Estimate π̂0(λ) and P̂ r(P ≤ t)

For rejection region of interest [0, t], estimate
pFDR(t)

For B bootstrap samples of p1, p2, . . . , pm find

p̂FDR
∗b

λ (t).

Use (1 − α) quantile of p̂FDR
∗b

λ (t) as the
(1 − α) upper confidence bound for pFDR(t).
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Fixed rejection region procedure
Calculate p-values p1, p2, . . . , pm.

Estimate π̂0(λ) and P̂ r(P ≤ t)

For rejection region of interest [0, t], estimate
pFDR(t)

For B bootstrap samples of p1, p2, . . . , pm find

p̂FDR
∗b

λ (t).

Use (1 − α) quantile of p̂FDR
∗b

λ (t) as the
(1 − α) upper confidence bound for pFDR(t).

If FDR of interest use F̂DRλ(t) = π̂0(λ)·t

P̂ r(P≤t)
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The q-value
A pFDR parallel to p-values.

p-value = min
Γ:t∈Γ

{Pr(T ∈ Γ|H = 0)}

q-value = inf
Γ:t∈Γ

(pFDR(Γ))

The minimum pFDR that can occur when
rejecting a statistic with value t.

For test with independent p-values, for observed
p-value p

q(p) = inf
γ≥p

{

π0γ

Pr(P ≤ γ)

}

Multiple hypothesis testing - recent developments and future challenges – p.15/28
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The q-value
For test with independent p-values, for observed
p-value p

q(p) = inf
γ≥p

{

π0γ

Pr(P ≤ γ)

}

Estimation algorithm:
Calculate p-values p1, . . . , pm.
Order the p-values: p(1) ≤ p(2) ≤ · · · ≤ p(m)

Set q̂(p(m)) = p̂FDR(p(m))

for i=(m-1):1
Set q̂(p(i)) = min(p̂FDR(p(i)), q̂(p(i+1)))
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BH vs. Storeys procedure
BH-procedure:

Find ordered observed p-values:
p(1) ≤ p(2) ≤ . . . p(m)

Calculate k̂ = max{k : p(k) ≤ α · k/m}

Reject null hyp. corresponding to p(1) . . . p(k̂)

Threshold t found such that ( t·m
R(t)) ≤ α.
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BH vs. Storeys procedure
BH-procedure:

Find ordered observed p-values:
p(1) ≤ p(2) ≤ . . . p(m)

Calculate k̂ = max{k : p(k) ≤ α · k/m}

Reject null hyp. corresponding to p(1) . . . p(k̂)

Threshold t found such that ( t·m
R(t)) ≤ α.

The natural empirical estimator for FDR.

Corresponds F̂DRλ=0(t) (and π0 = 1).
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BH vs. Storeys procedure
New procedure:

Estimate π̂0(λ), (t ≤ λ)
Find ordered observed p-values:
p(1) ≤ p(2) ≤ . . . p(m)

Calculate
k̂ = max{k : p(k) ≤ α · k/(m · π̂0(λ))}

Reject null hyp. corresponding to p(1) . . . p(k̂)

Use estimated π̂0?

A less conservative test.
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BH vs. Storeys procedure
New procedure:

Find ordered observed p-values:
p(1) ≤ p(2) ≤ . . . p(m)

Calculate
k̂ = max{k : p(k) ≤ α · k/(m · π̂0(λ))}

Reject null hyp. corresponding to p(1) . . . p(k̂)

Use estimated π̂0?

If the p-values corresponding to the true null
hypothesis are independent the procedure
strongly controls the FDR at level α for any λ.
Some technical adjustments needed.

Asymptotically also valid under weakly
dependence.
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Example power, Storey et al. (2003)

m = 1000 one-sided hypothesis tests.

Null distribution N(0, 1), alternative N(2, 1)

m0 = 100, 200, . . . , 900

1000 sets of 1000 variables for each m0

Levels α = 0.05 and α = 0.01 and λ = 0.5
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Bayesian interpretation
Prior:

Let Pr(Hi = 0) = π0 and Pr(Hi = 1) = π1,
and assume Hi i.i.d. Bernoulli.
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Bayesian interpretation
Prior:

Let Pr(Hi = 0) = π0 and Pr(Hi = 1) = π1,
and assume Hi i.i.d. Bernoulli.

for m = 1

Pr(H = 0|T ∈ Γ) = Probability of false
rejection given stat. is significant.
V (Γ)
R(Γ) |R > 0 = 0 ∨ 1

pFDR(Γ) = Pr(H = 0|T ∈ Γ), posterior
probability that the rejection is false.
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Bayesian interpretation
Prior:

Let Pr(Hi = 0) = π0 and Pr(Hi = 1) = π1,
and assume Hi i.i.d. Bernoulli.

For general m
Theorem 1
Let Ti be test stat. corresponding to Hi. If

(Ti, Hi) i.i.d., and

Ti|Hi ∼ (1 − Hi)F0 + HiF1 then

pFDR(Γ) = Pr(H = 0|T ∈ Γ)
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Bayesian interpretation
Prior:

Let Pr(Hi = 0) = π0 and Pr(Hi = 1) = π1,
and assume Hi i.i.d. Bernoulli.

For general m
Theorem 1
Let Ti be test stat. corresponding to Hi. If

(Ti, Hi) i.i.d., and

Ti|Hi ∼ (1 − Hi)F0 + HiF1 then

pFDR(Γ) = Pr(H = 0|T ∈ Γ)

Posterior Bayesian type I error.

Does not depend on m
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Properties pFDR

pFDR(Γ) = Pr(H = 0|T ∈ Γ)
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Properties pFDR

pFDR(Γ) = Pr(H = 0|T ∈ Γ)

π0 · Pr(T ∈ Γ|H = 0)

π0 · Pr(T ∈ Γ|H = 0) + π1 · Pr(T ∈ Γ|H = 1)
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Properties pFDR

pFDR(Γ) = Pr(H = 0|T ∈ Γ)

π0 · Pr(T ∈ Γ|H = 0)

π0 · Pr(T ∈ Γ|H = 0) + π1 · Pr(T ∈ Γ|H = 1)

π0 · (Type-I-error of Γ)

π0 · (Type-I-error of Γ) + π1 · (Power of Γ)

Increases with increasing type-I-errors.

Decreases with increasing power.
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Properties pFDR

pFDR(Γ) = Pr(H = 0|T ∈ Γ)

π0 · Pr(T ∈ Γ|H = 0)

π0 · Pr(T ∈ Γ|H = 0) + π1 · Pr(T ∈ Γ|H = 1)

π0 · (Type-I-error of Γ)

π0 · (Type-I-error of Γ) + π1 · (Power of Γ)

E[V (Γ)] = m · π0 · Pr(T ∈ Γ|H = 0)

E[R(Γ)] = m · Pr(T ∈ Γ)

Multiple hypothesis testing - recent developments and future challenges – p.19/28
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Properties pFDR

pFDR(Γ) = Pr(H = 0|T ∈ Γ)

π0 · Pr(T ∈ Γ|H = 0)

π0 · Pr(T ∈ Γ|H = 0) + π1 · Pr(T ∈ Γ|H = 1)

π0 · (Type-I-error of Γ)

π0 · (Type-I-error of Γ) + π1 · (Power of Γ)

Corollary

Under the assumptions of Theorem 1:

pFDR = E[
V (Γ)

R(Γ)
|R(Γ) > 0] =

E[V (Γ)]

E[R(Γ)]
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Interpretation of the q-value
Def:

q-value = inf
Γα:t∈α

pFDR(Γα)

The pFDR of the smallest possible rejection
region s.t. t ∈ Γα.

Corollary
Under the assumptions of Theorem 1:

q-value = inf
Γα:t∈Γα

Pr(H = 0|T ∈ Γα)
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Connection to classification theory
Misclassification penalties:

Classify Hi as 0 Classify Hi as 1

Hi = 0 0 1 − λ

Hi = 1 λ 0

Bayes error:

BE(Γ) = (1 − λ) · Pr(Ti ∈ Γ, Hi = 0)

+λ · Pr(Ti 6∈ Γ, Hi = 1)

Expected loss under misclassification
penalties.
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The positive non-discovery rate

pFNR = E[
T

W
|W > 0]

W : Number of non-rejected hypothesis.
T : Number of non-rejected alternative
hypothesis.
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The positive non-discovery rate

pFNR = E[
T

W
|W > 0]

Theorem 2
Under the assumptions of theorem 1 is

pNDR(Γ) = Pr(H = 1|T 6∈ Γ)

with π1 = 1 − π0 as prior; Pr(H = 1) = π1.

Posterior Bayesian type-II error
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The positive non-discovery rate

pFNR = E[
T

W
|W > 0]

Posterior Bayesian type-II error

Corollary
Under the assumptions of theorem 1;

BE(Γ) = (1 − λ) · Pr(T ∈ Γ) · pFDR(Γ)

+λ · Pr(T 6∈ Γ) · pNDR(Γ)
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Choosing rejection region
Two ways of fixing the rejection region beforehand:

Rejection region Γ that minimise the Bayes error
(based on relative cost λ)

BE(Γ) = (1 − λ) · Pr(T ∈ Γ) · pFDR(Γ)

+λ · Pr(T 6∈ Γ) · pFNR(Γ)

Rejection region Γ that minimise the weighted
average

(1 − ω) · pFDR(Γ) + ω · pFNR(Γ)

PS: Can not find Γ and estimate pFDR from the
same data.
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Future challenges, false discovery
rates

Estimator properties:

Optimal conservative estimates for F̂RDλ and
̂pFDRλ?

Convergence properties.
Operational properties of q̂.
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rates

Estimator properties:

Optimal conservative estimates for F̂RDλ and
̂pFDRλ?

Convergence properties.
Operational properties of q̂.

Dependencies:
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Future challenges, false discovery
rates

Estimator properties:

Optimal conservative estimates for F̂RDλ and
̂pFDRλ?

Convergence properties.
Operational properties of q̂.

Dependencies:
Finite size dependency behaviour.
Modelling dependency among hypothesis
tests.

Gain power from more information.
Assumption about the alternative distribution.
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Future challenges, multiple hypoth-
esis testing
Three reasons for using FDR in multiple hypothesis
testing Benjamini & Hochberg (1995):

Multiple end points problem :
Whether to recommend a new treatment or
not.
Rejected null: Treatment better then standard
for specific end point.
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Future challenges, multiple hypoth-
esis testing
Three reasons for using FDR in multiple hypothesis
testing Benjamini & Hochberg (1995):

Multiple end points problem

Multiple separate decisions

Screening problems:
As in the microarray setting.
Validation in a more expensive 2nd phase,
want to limit the cost.
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Multiple end points and multiple
separate decisions

Multiple end points problem:

Whether to recommend a new treatment or not.

Rejected null: Treatment better then standard for

specific end point.

Multiple separate decisions:

Two treatments compared for multiple subgroups.

Recommendation made for each subgroup.

Independent decisions.

Why adjust significance?
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Multiple end points and multiple
separate decisions

Multiple end points problem:

Whether to recommend a new treatment or not.

Rejected null: Treatment better then standard for

specific end point.

Multiple separate decisions:

Two treatments compared for multiple subgroups.

Recommendation made for each subgroup.

Independent decisions.

Why adjust significance?

Dependency
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Decision theory and hypothesis test-
ing

Decision theory: Want to minimise expected loss.

Single hyp. testing minimise E(L1);
accept H reject H

H = 0 0 0

H = 1 1 0

under the constraint E(L2) < α with L2

accept H reject H

H = 0 0 1

H = 1 0 0
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Decision theory and hypothesis test-
ing

Decision theory: Want to minimise expected loss.

Single hyp. testing minimise E(L1);
under the constraint E(L2) < α with L2

Using pFDR
accept null reject null

Hi = 0 0 1 − ω

Hi = 1 ω 0
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Decision theory and hypothesis test-
ing

Decision theory: Want to minimise expected loss.

Single hyp. testing minimise E(L1);
under the constraint E(L2) < α with L2

Using pFDR
accept null reject null

Hi = 0 0 1 − ω

Hi = 1 ω 0

Natural choice of loss function?
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Future challenges
Dependency!
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Future challenges
Dependency!

Is multiple hypothesis testing the right tool?
Exploration of dataset ⇒ estimation.
Make decision ⇒ loss function
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