
Statistical Classification

Minsoo Kim
Pomona College

Advisor: Jo Hardin

April 2, 2010

2

Contents

1 Introduction 5

2 Basic Discriminants 7

2.1 Linear Discriminant Analysis for Two Populations 7

2.1.1 Classification of Normal Populations when Σ1 = Σ2 = Σ 9

2.2 Fisher’s Discriminant Analysis . 12

2.3 Further Concerns . 14

3 Support Vector Machines 17

3.1 Lagrange Multipliers . 17

3.2 Hard Margin Support Vector Machines . 19

3.3 L1 Soft Margin Support Vector Machines . 25

3.4 Kernel Methods . 28

3.5 Further Concerns . 33

4 Applications in R 35

4.1 LDA in R . 36

3

4 CONTENTS

4.2 Support Vector Machines in R . 38

5 Conclusion 43

Chapter 1

Introduction

Consider the following problem: suppose you are a doctor whose patient has just been hospitalized
with a heart attack. Will he or she have another heart attack within the next six months? Or this
one: suppose you are a bank, and given a person who wants to take out a small business loan, will
she default on the loan? Or how about this one: how can your email server tell which emails are
spam and which ones are actual mail?

Intuitively, there is a sense that all of the above situations can be resolved by examining em-
pirical data and figuring out what factors are important in each. For example, in the heart attack
case, one might want to look through hospitalization records of patients who have had two heart
attacks in a six month period and see if your patient resembles them in age, demographics, diet and
exercise habits, and other clinical measurements. Or for loans, one might evaluate future borrowers
on their credit score, income, and number of credit cards they have, and make a decision based on
previous borrowers with similar profiles.

The above situations are examples of classification problems. Classification is a statistical
method used to build predicative models to separate and classify new data points. Let us examine
the spam filtering example in more detail. The populations we want to distinguish between are
junk emails, those emails from advertisers or hackers that fill up your inbox and cause everyone a
headache, and real emails. Next, suppose you have a collection of emails already, say N of them,
some of them junk and some of them real, and from these emails we want to build ways to filter out
spam. We refer to this collection of emails as the training set , which is, in general, a set of data
that is already classified that we use to build our classification model. We refer to the training data
as X = {x1,x2, . . . ,xN}.

Now, from our training data, we need to determine which variables, called features, we want
to measure to assess whether future emails are spam or not. Features can be continuous or discrete:
an example of a discrete feature is whether the sender of an email comes from a .edu address or
not, and an example of a continuous feature is the percentage of an email that a certain word or
character (like “free”, “your”, or “!”) takes up. If m features are measured, each email contains a
m× 1 row vector xi, for i ∈ {1, . . . , N} of data, and we refer to the space Rm as the feature space .
The training data is a N ×m matrix, where entry xij represents the jth feature of the ith email.
Finally, using our training data X, classification will make a decision function , D(x), a function

5

6 CHAPTER 1. INTRODUCTION

that takes a new data point and produces a prediction of its population
The three examples above are just a small sample of the uses of classification. Given these

preliminaries, this paper will examine various methods of classification, starting with linear discrim-
inant analysis and Fisher’s discriminant analysis, to Support Vector Machines (SVMs). Our work
will conclude with an analysis of the linear classifiers and SVMs applied to an actual data set.

Chapter 2

Basic Discriminants

The first classification methods we examine are linear discriminant; particularly, Linear Discriminant
Analysis and Fisher’s Discriminant Analysis. They are similar in that they both produce linear
decision functions that in fact are nearly identical, but the two methods have different assumptions
and different approaches. In this chapter the two methods are compared and contrasted.

2.1 Linear Discriminant Analysis for Two Populations

Given a pair of known populations, π1 and π2, assume that π1 has a probability density function
(pdf) f1(x), and similarly, π2 has a pdf of f2(x), where f1(x) 6= f2(x). Then intuitively, a decision
function for the two populations would arise from looking at the probability ratio: D(x) = f1(x)

f2(x) .
A new observation x is classified as π1 if D(x) > 1 and π2 if D(x) < 1. (For cases where D(x) = 1,
the vector x is unclassifiable.) Let Ω be the space of all possible observations, and denote the set of
x ∈ Ω where f1(x)

f2(x) > 1 as R1, and similarly the set of x ∈ Ω where f1(x)
f2(x) < 1 as R2. (Denote the set{

x | f1(x)
f2(x) = 1

}
as being R3.)

Such a decision function is simple but effective: by determining from which population x is
more likely to have come, one can make quick predictions about its origin. However note that the
probability ratio decision function is surely not fool proof: when the probabilities f1(x) and f2(x)
are close together (or not), there is always a chance that x could be from π2 when f1(x) > f2(x).
(Or visa versa.) The conditional probability, P (2|1), of classifying an observation x as π2 when in
fact x ∈ π1 is

P (2|1) = P (x ∈ R2 | π1) =
∫
R2

f1(x)dx. (2.1)

7

8 CHAPTER 2. BASIC DISCRIMINANTS

Similarly, the conditional probability of classifying an observation x as π1 when in fact x ∈ π2 is

P (1|2) = P (x ∈ R1 | π2) =
∫
R1

f2(x)dx. (2.2)

Often times, the costs of misclassification for the two populations are different; take for example
testing for a fatal but easily curable disease. The cost of misclassifying a patient as healthy when he
or she is sick in this case would be higher than misclassifying a healthy patient as sick. To account
for such situations, we would like a classification method that would classify patients as healthy only
when there is sufficient evidence to overcome a certain cost threshold. We define c(1|2) as the cost
of misclassifying a data point in π1 when it is actually a member of π2, and similarly, c(2|1) as the
cost of misclassification into π2 when x ∈ π1.

Another factor that can affect accurate classification is the prior probability of belonging to
one or the other of the populations. Again referring to the above example, if said disease has a
low prevalence, even a test with a high sensitivity will classify many patients as sick when they are
not when administered to enough people, making it difficult to determine whether a positive test
actually indicates a sick patient. Some sort of weight ought to be given to the prior probability that
a random observation x is from π1 or π2, and we denote such probabilities as p1 and p2 respectively.

Note that with our prior probabilities, we can find the overall probabilities of misclassification
by substituting our priors into the earlier conditional probabilities:

P (observation comes from π1 and is misclassified as π2) (2.3)
= P (x ∈ R2 | π1)P (π1) (2.4)
= P (2|1)× p1, (2.5)

and

P (observation comes from π2 and is misclassified as π1) (2.6)
= P (x ∈ R1 | π2)P (π2) (2.7)
= P (1|2)× p2. (2.8)

Then, the expected cost of misclassification (ECM) is given by multiplying the cost of
misclassification by the overall probability of misclassification for each population:

ECM = c(2|1)P (2|1)p1 + c(1|2)P (1|2)p1. (2.9)

One criterion for a classification method is to minimize the ECM, which leads us to the following
result:

Theorem 2.1.1. (Johnson and Wichern, [4]) The regions R1 and R2 that minimize the ECM are
defined by the values of x for which the following inequalities hold:

R1 :
f1(x)
f2(x)

>
c(1|2)
c(2|1)

× p2

p1
, (2.10)

R2 :
f1(x)
f2(x)

<
c(1|2)
c(2|1)

× p2

p1
. (2.11)

Proof. Let us substitute the integral expressions for P (2|1) and P (1|2) given by (2.1) and (2.2) into
the ECM:

ECM = c(2|1)p1

∫
R2

f1(x)dx + c(1|2)p2

∫
R1

f2(x)dx. (2.12)

2.1. LINEAR DISCRIMINANT ANALYSIS FOR TWO POPULATIONS 9

Note that Ω = R1 +R2 +R3, so

1 =
∫

Ω

f1(x)dx =
∫
R1

f1(x)dx +
∫
R2

f1(x)dx +
∫
R3

f1(x)dx. (2.13)

Since we know that f1(x) 6= f2(x), R3 must be a union of distinct points, meaning
∫
R3
f1(x)dx = 0,

leaving us with

1 =
∫
R1

f1(x)dx +
∫
R2

f1(x)dx. (2.14)

Plugging (2.14) into (2.12), we see

ECM = c(2|1)p1

[
1−

∫
R1

f1(x)dx

]
+ c(1|2)p2

∫
R1

f2(x)dx (2.15)

⇒ ECM =
∫
R1

[
c(1|2)p2f2(x)− c(2|1)p1f1(x)

]
dx + c(2|1)p1. (2.16)

Recall that p1, p2, c(1|2), c(2|1) are all positive since they are all probabilities and f1(x) and f2(x)
are both positive functions. Then by inspection, we can see that the ECM is minimized when R1

is defined by those x such that [c(1|2)p2f2(x) − c(2|1)p1f1(x)] ≤ 0. However, if in (2.13) we had
decided to use f2(x) instead of f1(x), (2.16) would have been

ECM =
∫
R2

[
c(2|1)p1f1(x)− c(1|2)p2f2(x)

]
dx + c(1|2)p2,

leading to the definition of R2 as the set {x | [c(2|1)p1f1(x)− c(1|2)p2f2(x)] ≤ 0}. As those x that
satisfy c(1|2)p2f2(x) = c(2|1)p1f1(x) can therefore be defined as both R1 and R2, we require that
the inequalities in Theorem (2.1.1) defining the classification regions be strict and denote the case
of equality as unclassifiable. (Note that unclassifiable points happen with probability zero.)

The decision function given in Theorem (2.1.1) compares the probability ratio to the cost ratio
and prior probability . The use of ratios is important as often times, it is much easier estimate
the cost ratio than each cost explicitly. For example, if we are considering the costs of an state
university of educating an eventual dropout versus the costs of not educating a eventual graduate,
the former can be estimated with the school taxes and tuition, but the latter is more difficult to
gauge. However, it could still be accurate to predict that such a cost ratio might be 5:1 or so.

Let us examine the case where fi(x) are multivariate normal densities with known mean vectors
µi and covariance matrices Σi.

2.1.1 Classification of Normal Populations when Σ1 = Σ2 = Σ

Suppose that the density functions for f1(x) and f2(x) for population π1 and π2 are given by

fi(x) =
1

(2π)
m
2 |Σ| 12

exp

[
− 1

2
(x− µi)TΣ−1(x− µi)

]
for i = 1, 2, (2.17)

10 CHAPTER 2. BASIC DISCRIMINANTS

for x ∈ Rm. Then by substituting (2.17) into Theorem (2.1.1), we get the following minimum ECM
regions:

R1 : exp

[
− 1

2
(x− µ1)TΣ−1(x− µ1) +

1
2

(x− µ2)TΣ−1(x− µ2)

]
>
c(1|2)
c(2|1)

× p2

p1
, (2.18)

R2 : exp

[
− 1

2
(x− µ1)TΣ−1(x− µ1) +

1
2

(x− µ2)TΣ−1(x− µ2)

]
<
c(1|2)
c(2|1)

× p2

p1
. (2.19)

Given the regions R1 and R2, we can construct the following classification rule:

Theorem 2.1.2. [4] Let the populations π1 and π2 be described by multivariate normal densities
with known parameters µ1 and µ2 and Σ1 = Σ2 = Σ. Then the allocation rule that minimizes the
ECM is as follows:
Allocate x to π1 if

(µ1 − µ2)TΣ−1x− 1
2

(µ1 − µ2)TΣ−1(µ1 + µ2) > ln

[
c(1|2)
c(2|1)

× p2

p1

]
.

Else, allocate x to π2. And as before, equality implies that the data point is unclassifiable.

Proof. Note that

− 1
2

(x− µ1)TΣ−1(x− µ1) +
1
2

(x− µ2)TΣ−1(x− µ2), (2.20)

=
1
2

[
(xTΣ−1 − µT2 Σ−1)(x− µ2)− (xTΣ−1 − µT1 Σ−1)(x− µ1)

]
, (2.21)

=
1
2

[
xTΣ−1x− xTΣ−1µ2 − µT2 Σ−1x + µT2 Σ−1µ2

− xTΣ−1x + xTΣ−1µ1 + µT1 Σ−1x− µT1 Σ−1µ1

]
. (2.22)

Here, we can cancel out the xTΣ−1x term and moreover, since (xTΣ−1µ2)T = µT2 Σ−1x is a constant,

−xTΣ−1µ2 − µT2 Σ−1x = −2µT2 Σ−1x, (2.23)

xTΣ−1µ1 + µT1 Σ−1x = 2µT1 Σ−1x. (2.24)

(Recall that Σ is a symmetric matrix.) Substituting equation (2.23) and (2.24) into equation (2.22),

2.1. LINEAR DISCRIMINANT ANALYSIS FOR TWO POPULATIONS 11

we see,

1
2

[
xTΣ−1x− xTΣ−1µ2 − µT2 Σ−1x + µT2 Σ−1µ2

−xTΣ−1x + xTΣ−1µ1 + µT1 Σ−1x− µT1 Σ−1µ1

]
=

1
2

[
2µT1 Σ−1x− 2µT2 Σ−1x + µT2 Σ−1µ2 − µT1 Σ−1µ1

]
= (2.25)

(µ1 − µ2)TΣ−1x− 1
2

(µ1 − µ2)TΣ−1(µ1 + µ2). (2.26)

Consequently, after taking the natural log of (2.18), the desired allocation rule follows.

However, theorem (2.1.2) supposes that the values of µ1,µ2,Σ are known, which is almost
never the case. Thus, we need to use estimates from our data. Suppose then we have a set of
training data, {xij}, for the ith (i = 1 or 2) population and the jth data value (j from 1 to n1

or n2). Then the sample mean vector is calculated by averaging the data vectors from each class,

i.e. x̄i =

∑ni

j=1 xij
ni

. Moreover, we will calculate the covariance matrices for each population by

Si =
1

ni − 1

ni∑
j=1

(xij − x̄i)(xij − x̄i)T . (Note that x̄i is a (m×1) vector and Si is a (m×m) matrix.)

Since we assume that the two covariance matrices are equal, we will pool the two sample covariance
matrices to derive an unbiased estimate of Σ:

Spooled =

[
n1 − 1

(n1 − 1) + (n2 − 1)

]
S1 +

[
n2 − 1

(n1 − 1) + (n2 − 1)

]
S2,

=
(n1 − 1)S1 + (n2 − 1)S2

n1 + n2 − 2
.

Substituting our estimates into our allocation rule yields:

Theorem 2.1.3. [4] Allocate x to π1 if

(x̄1 − x̄2)TS−1
pooledx−

1
2

(x̄1 − x̄2)TS−1
pooled(x̄1 + x̄2) > ln

(
c(1|2)
c(2|1)

× p2

p1

)
. (2.27)

Note that once we use parameter estimates rather than the known quantities, then the derived
allocation rule is an estimate of the optimal allocation rule. However, if sample sizes are large, then
it is reasonable to expect the estimate to be close enough to the optimal rule.

Lastly, let us consider the case in which the cost ratios and prior probability ratios are equal

12 CHAPTER 2. BASIC DISCRIMINANTS

(
i.e.,

c(1|2)
c(2|1)

× p2

p1
= 1

)
, changing the equation in Theorem (2.1.3) to

(x̄1 − x̄2)TS−1
pooledx−

1
2

(x̄1 − x̄2)TS−1
pooled(x̄1 + x̄2) > ln[1] = (2.28)

(x̄1 − x̄2)TS−1
pooledx−

1
2

(x̄1 − x̄2)TS−1
pooled(x̄1 + x̄2) > 0 (2.29)

⇒ (x̄1 − x̄2)TS−1
pooledx >

1
2

(x̄1 − x̄2)TS−1
pooled(x̄1 + x̄2) (2.30)

If we denote (x̄1 − x̄2)TS−1
pooled as a row vector, say l̂, then we can write (2.30) as

l̂x >
1
2
l̂(x̄1 + x̄2). (2.31)

In essence, we can think of the decision rule as reducing the number of dimensions of our data to
one by projecting it on our vector l̂, and allocating a new point x by where it lies relative to the

midpoint of the two classes,
1
2
l̂(x̄1 + x̄2).

2.2 Fisher’s Discriminant Analysis

Figure 2.1: Fisher’s Discriminant Analysis: Striking a balance between class separation and in-class
variance, [2].

R.A. Fisher proposed another method for linear discriminant analysis that did not presuppose
any known distribution of the training data. He does, however, begin with the idea of dimensionality
reduction shown above. Again, suppose that we have our training data set {xij} as defined above,
where populations π1 and π2 don’t necessarily have the same distribution but have equal covariance
matrices Σ1 = Σ2 = Σ. Then, if given a vector w with unit length, we can project our set in the
direction of w by taking the dot product of the two vectors : {w · xij}.

Onto what kind of vector w do we want to project our data? To make a good classifier, the

2.2. FISHER’S DISCRIMINANT ANALYSIS 13

two projected class means ought to be far apart, i.e. we want to make wT (x̄2 − x̄1) large. (To
find a bounded solution, we specify that we want ||w|| = 1.) That way the differences between
the two classes are maximally highlighted and evaluating the projection of a new point against the
projected sample means can accurately classify the largest number of points. The goal of being able
to classify the largest number of unknown points accurately based on the training data is called the
generalization ability and motivates Support Vector Machines, the next chapter.

But separating the projected class means is only one concern, since if the classes have a large
variance on the projected vector, then the class overlap can potentially make classification inac-
curate. Refer to the figure on the opposite page. The picture on the left projects the data onto
the vector connecting the two sample means, assuring that the distance between the two projected
means is maximized. However, since the two projected classes are not partitioned on the projection
vector, the problem of classifying new points is no easier. However, in the picture on the right, the
chosen projection vector separates the projected sample means and partitions the two classes on the
projection vector. Classification of a new point x0 then is based on comparing the projection of x0

to the midpoint between the two projected sample means. To tend toward a vector that partitions
our classes, we want to minimize the within-class variance, i.e. we want to minimize

wTSpooledw =

wT

(∑n1
j=1(x1j − x̄1)(x1j − x̄1)T +

∑n2
j=1(x2j − x̄2)(x2j − x̄2)T

)
w

n1 + n2 − 2
.

(Recall that wTSpooledw is the weighted sum of the variances of the two projected populations.)
We can optimize the difference between projected means and the in-class variance in one equation

so that we can find our desired projection vector:

Maximize J(w) =
(wT (x̄2 − x̄1))2

wTSpooledw
such that ||w|| = 1. (2.32)

We then prove the maximization lemma to show that Fisher’s Discriminant Analysis gives
w α (x̄1 − x̄2)TS−1

pooled.

Lemma 2.2.1. (Maximization Lemma,[4]): For B a positive definite matrix, d a given vector,
and x a non zero arbitrary vector,

max
(xTd)2

xTBx
= dTB−1d such that ||w|| = 1, (2.33)

with the maximum attained when x = cB−1d for some constant c 6= 0.

Proof. By using the extended Cauchy-Schwarz inequality, (xTd)2 ≤ (xTBx)(dTB−1d). Dividing

both sides by (xTBx) yields
(xTd)2

(xTBx)
≤ dTB−1d. Thus the maximum is dTB−1d, as desired.

Setting the equality and solving for x yields x = cB−1d.

Note that this is not a classification method in and of itself, because Fisher’s procedure only
find the optimal vector to project data onto. However, as mentioned above, classification should
compare the projection of new points to the midpoint between the two projected sample means:

14 CHAPTER 2. BASIC DISCRIMINANTS

Theorem 2.2.2. (Allocation Rule Based on FDA): Classify an unclassified point x0 to π1 if

y0 = (x̄1 − x̄2)TS−1
pooledx0 > m̂ =

1
2

(x̄1 − x̄2)TS−1
pooled(x̄1 + x̄2), (2.34)

to π2 if

y0 = (x̄1 − x̄2)TS−1
pooledx0 < m̂ =

1
2

(x̄1 − x̄2)TS−1
pooled(x̄1 + x̄2), (2.35)

and unclassifiable if equality holds.

Recall that in the previous section, we defined a vector l̂ = (x̄1 − x̄2)TS−1
pooled and showed that

given no cost or prior probability concerns, Linear Discriminant Analysis could be interpreted as
projecting an unknown datum onto a vector and then comparing the projection of the unknown
point to the midpoint between the two projected sample means. Thus, we can see that Fisher’s
method is identical to assuming that the two populations are distributed similarly and with equal
covariance matrices, given no cost or prior probability concerns.

We should mention that the assumption of equal covariance matrices is important, because that
justifies our choice of the midpoint as the classification critical value. Consider the trivial example
shown on the next page. Here the two populations have clearly difference variances, and thus one
population occupies a greater portion of the projection vector. Then the midpoint is a poor choice
for a critical value, and an accurate decision function will have its critical value closer to µ1.

2.3 Further Concerns

In this chapter, we have looked at two basic methods of linear discrimination, one that is parametric
and another that is non-parametric. However, we only covered cases where the two within-class
variances were equal (Σ1 = Σ2 = Σ). We have just seen that Fisher’s Discriminant Analysis fails
when the two class variances are different, but Linear Discriminant Analysis can account for this by
directly plugging the two covariance matrices in separately to the pdfs, f1(x) and f2(x). Another
issue that was not covered in this section is the difference between the estimated allocation and the
optimal allocation when using LDA. The interested reader can find plenty of literature outlining the
difference, and a good place to start is section 11.4 in [4].

2.3. FURTHER CONCERNS 15

Figure 2.2: A trivial example of two unequal class variances.

16 CHAPTER 2. BASIC DISCRIMINANTS

Chapter 3

Support Vector Machines

In training any classifier, an obvious goal would be to correctly classify our training data. But if
we create a classifier that is too well fit to our data, we run the risk of developing a model that
performs poorly when asked to classify unknown data, a condition known as overfitting . This is a
particularly important concern when the available amount of training data is small or suspected to
be a poor representation of the general population. The motivation behind Support Vector Machines
is to maximize the generalization ability, meaning that it finds the classifier that most accurately
can predict unknown data points based on the training data.

For now, we focus on case of trying to distinguish between two classes.

3.1 Lagrange Multipliers

Before discussing SVMs, it is useful to review Lagrange Multipliers, as they play a major role in
the construction of SVMs. In short, Lagrange Multipliers are constants that help solve constrained
maximization/minimization problems.

Suppose we want to find the maximum value for a given function f(x) subject to a constraint
g(x) = 0. Geometrically, if x ∈ Rm, then the constraint g(x) = 0 represents some m−1 dimensional
surface in Rm.

Lemma 3.1.1. ∇g(x) is orthogonal to g(x) for all x on the surface g(x) = 0. [2]

Proof. Consider the linear approximation of g(x): g(x+ε) ∼= g(x)+εT∇g(x) for two points x,x+ε
that are on the surface g(x) = 0. Since g(x) = 0 = g(x + ε), we know εT∇g(x) ∼= 0. Moreover,
as ||ε|| approaches 0, ε becomes parallel to the surface g(x) = 0 and so we conclude that ∇g(x) is
orthogonal to the surface.

Moreover, if f(x) is maximized on g(x) = 0, then ∇f(x) is also orthogonal to g(x) = 0. Recall

17

18 CHAPTER 3. SUPPORT VECTOR MACHINES

Figure 3.1: Picture from Bishop, [2].

that ∇f(x) is the direction in which f(x) increases the fastest. If ∇f(x) is not orthogonal to
g(x) = 0, then it is possible to move along g(x) = 0 in the direction of ∇f(x), increasing the value
f(x). Thus, there must exist some constant λ 6= 0 so that

∇f(x) + λ∇g(x) = 0. (3.1)

Note that λ can have either sign.
We can create a new function, called the Lagrange Function, L(x, λ) = f(x) + λg(x), and by

finding the stationary points of the Lagrange Function, i.e. ∇x,λL = 0, we can solve for the point
x0 that maximizes f(x) subject to g(x) = 0. Note that ∇xL(x, λ) = 0 gives us the constraints given
by equations (3.1), and ∇λL(x, λ) = 0 gives us our original constraint, g(x) = 0.

Lagrange Multipliers also solve optimization problems with constraints using inequalities. Again,
suppose we wish to maximize f(x) subject to the constraint g(x) ≥ 0. There are now two possible
solutions. If the solution x satisfies g(x) > 0, the constraint is called inactive, as the same solution x
can be found by optimizing f(x) without any constraint. This solution corresponds to the stationary
point where ∇f(x) = 0, meaning that λ = 0 for an inactive constraint. However, if the optimal
solution x satisfies g(x) = 0, the constraint is called active, and is identical to the previous situation
where λ 6= 0. However, now the sign of λ is significant, as f(x) is maximized when ∇f(x) and ∇g(x)
point in opposite directions. (If ∇f(x) and ∇g(x) did not point in different directions, it would be
possible to find an new x′ that both f(x) and g(x) are increased, violating the optimality of x.) We
can write this new fact as

∇f(x) = −λ∇g(x), (3.2)

where λ ≥ 0.
For an active or inactive constraint, we know that λ · g(x) = 0. So the x that maximizes f(x)

subject to the constraint g(x) ≥ 0 is the x that satisfies equations (3.1) and

g(x) ≥ 0, (3.3)
λ ≥ 0, (3.4)

λg(x) = 0. (3.5)

These are called the Karush-Kuhn-Tucker(KKT) conditions. [2]
Alternatively, minimizing f(x) subject to g(x) ≥ 0 is equivalent to minimizing the Lagrangian

function L(x, λ) = f(x)−λg(x) subject to the same KKT conditions.(Equations (3.1),(3.3),(3.4),(3.5))

3.2. HARD MARGIN SUPPORT VECTOR MACHINES 19

Figure 3.2: Picture from Bishop, [2].

Finally, multiple constraints can be added to an optimization problem by introducing more La-
grange multipliers: To maximize f(x) subject to gi(x) = 0 constraints for i ∈ {1, . . . , k} and
hj(x) ≥ 0 for j ∈ {1, . . . , l}, maximize the value of the Lagrangian function

L(x, λ) = f(x) +
k∑
i=1

λigi(x) +
l∑

j=1

µjhj(x), (3.6)

subject to the following conditions:

hj(x) ≥ 0,
µj ≥ 0,

µj · hj(x) = 0.

3.2 Hard Margin Support Vector Machines

Let N m-dimensional training inputs xi for i ∈ {1, 2, . . . , N} belong to either population 1 or
population 2, and the associated labels yi be 1 for population 1 and -1 for population 2. Moreover,
assume that the data points are linearly separable , meaning that there exists some m-dimensional
hyperplane that separates the data points into the two groups. More specifically, we can find a
decision function

D(x) = wTx + b,

where w is an m-dimensional vector and b is a constant bias term so that

D(x) = wTx + b

{
> 0 for yi = 1,
< 0 for yi = −1. (3.7)

(Note that D(x) is of the form of a hyperplane.) Since we assumed linear separability, we can rewrite
our decision function. Let A = {ai} denote the set of all constants such that yi(wTxi + b) = ai;

20 CHAPTER 3. SUPPORT VECTOR MACHINES

taking the minimum of the set A, we can divide through by the minimum value, redefine the values
for w and b and rewrite (3.7) as

D(x) = wTx + b

{
> 1 for yi = 1

< −1 for yi = −1,

or alternatively,

yi(wTx + b) > 1. (3.8)

Note then that the hyperplane

D(x) = wTx + b = c, −1 < c < 1 (3.9)

separates the two populations. Furthermore, the
hyperplane with c = 0 lies between the hyper-
planes with c = 1 and c = −1.

Figure 3.3: Picture from Abe, [1].

The distance between the nearest datum and the hyperplane D(x) is called the margin , and
as we divided out by the minimum of our set A, we know that at least one datum is located on the
hyperplane D(x) = wTx+ b = ±1. Thus, the optimal separating hyperplane , or the hyperplane
that maximizes the margin, for −1 < c < 1 is D(x) = wTx + b = 0. Lastly, consider the region
{x| − 1 < D(x) < 1}. None of the training data is within the margin, because of our assumption
of linear separability. This region is called the generalizable region because based on the training
data, we can extend membership in either class 1 or 2 up to the decision hyperplane. Note that
we picked our optimal separating hyperplane to be the one that falls in the middle of the margin,
D(x) = wTx + b = 0, so that we don’t favor classifying points into one class over the other.

Before continuing further, we should discuss some properties of the optimal separating hyper-
plane. Given a set of linearly separable data, it should be clear that infinitely many separating
hyperplanes can be drawn in between the two populations. Moreover, it is just as clear that not all
separating hyperplanes have the same generalization ability. In fact, if the data have no outliers and
we assume the unknown data will obey the same probability law as that of the training data, then
the generalization ability will be maximized if the optimal separating hyperplane is selected as the
separating hyperplane.

Lemma 3.2.1. (Abe, [1].) Let D̂(x) = wTx + b = 0 be the optimal separating hyperplane and we
want to show that the Euclidean distance between D̂(x) and a datum xi is given by |D̂(xi)|

||w|| .

Proof. Note that any two vectors a,b are orthogonal if their dot product is zero. Consider then the
hyperplane D(x) = 0 with no bias term, namely D(x) = wTx = 0. This hyperplane contains all

3.2. HARD MARGIN SUPPORT VECTOR MACHINES 21

vectors that product with the vector w to equal zero, and thus we can say that w is orthogonal to
the hyperplane. Thus, the line that connects x0 and is orthogonal to the hyperplane is given by

aw
||w||

+ x0, (3.10)

where |a| is the Euclidean distance from x0 to the hyperplane. (Note that we can see this if we
understand w

||w|| as the “slope” of the line, and since we divide by ||w||, we reduce the vector w
down to a direction and we are taking |a| steps toward the hyperplane in that direction.) This line
(3.10) crosses D(x) precisely at the point where

D

(
aw
||w||

+ x0

)
= 0. (3.11)

Solving (3.11) for a, we see

D

(
aw
||w||

+ x0

)
= wT

(
aw
||w||

+ x0

)
=
aw2

||w||
+ wTx0

= a||w||+D(x0) = 0

⇒ a =
−D(x0)
||w||

.

Thus the case when D(x) has no bias term is shown.

Now suppose that D(x) = wTx + b. We claim that the vectors in D(x) = wTx + b are simply the
vectors in D(x) = wTx translated by − bw

||w||2 , which is in the direction of w, preserving orthogonality.

Claim: If x0 ∈ {x|D(x) = wTx = 0}, then x0 − bw
||w||2 ∈ {x|D(x) = wTx + b = 0}.

We need to show that D(x0 − bw
||w||2) = 0.

D

(
x0 −

bw
||w||2

)
= wT

(
x0 −

bw
||w||2

)
+ b

= wTx0 −wT bw
||w||2

+ b = 0 +− bw2

||w||2
+ b = −b+ b = 0.

Denote x0− bw
||w||2 as some vector x̂0. Thus, since w is orthogonal to the vectors in D(x) = wTx+b =

0, the line that connects x̂0 and D(x) is again given by

aw
||w||

+ x̂0, (3.12)

which crosses our new hyperplane D(x) = wTx + b = 0 when

D

(
aw
||w||

+ x̂0

)
= 0. (3.13)

22 CHAPTER 3. SUPPORT VECTOR MACHINES

Again solving (3.13) for a yields

D

(
aw
||w||

+ x̂0

)
= wT

(
aw
||w||

+ x̂0

)
+ b =

aw2

||w||
+ wT x̂i + b (3.14)

=
a

||w||
+D(x̂) = 0 (3.15)

⇒ a =
−D(x̂0)
||w||

, (3.16)

the desired result.

If the groups are linearly separable, all the training data {xi} for i ∈ {1, . . . , N} must satisfy

yiD̂(xi)
||w||

≥ δ, (3.17)

where δ is the margin, the minimum distance from a training datum to the hyperplane D̂(x) = 0.
Note that if (w, b) is a solution for the coefficients of the optimal hyperplane, then (cw, cb) is also a
solution, where c is a non zero constant. So we also impose the following constraint:

δ||w|| = 1. (3.18)

The implication of (3.18) is that the larger the Euclidean norm of w, the linear coefficient of our
hyperplane, the smaller our margin δ will be. As we want to maximize the generalization region by
maximizing the margin, we are searching for the vector w with the smallest norm such that (3.8) is
satisfied. To find such a w, we will minimize the function

Q(w) =
1
2
||w||2, (3.19)

with respect to w and b subject to the constraints given by (3.8):

yi(wTx + b) > 1.

The use of the square of the Euclidean norm in (3.19) is to make the optimization problem
a quadratic programming problem, and since we assumed linear separability, there must exist w
and b that satisfy (3.19) and (3.8). An advantage of quadratic programming is that even though
many distinct solutions may exist, they all give the same value for (3.19), meaning that the different
solutions give the same margin.

Note that the same optimal separating hyperplane will be reached if we only consider those data
points on the margin, namely those xi that satisfy

D(xi) = wTxi + b = ±1. (3.20)

These data points are called support vectors, and SVMs are called sparse learning machines since
they are able to classify new points only using a subset of the original data. As we will see later,
the definition of support vectors can be refined further, as some points that satisfy equation (3.20)
can also be deleted without changing the optimal hyperplane.

Consider the optimization problem given by (3.19) and (3.8). The variables of the convex

3.2. HARD MARGIN SUPPORT VECTOR MACHINES 23

optimization problem are given by w and b, meaning that the number of variables is the dimension
of the training data, equivalently the dimension of w, plus 1 for b: m + 1. When the number
of features we extract from the training data is small, we can solve this optimization problem
by quadratic programming. However, there are instances in which we want to project the input
data into a higher dimensional space, sometimes infinite, so it is necessary to construct the a dual
optimization problem of (3.19) and (3.8). The construction below will use Lagrange multipliers, and
more importantly, limit the decision variables in the dual by the number of training data available.

We first combine (3.19) and (3.8) into a Lagrangian function:

Q(w, b,α) =
1
2
wTw−

N∑
i=1

αi{yi(wTxi + b)− 1}, (3.21)

where α = (α1, α2, . . . , αN) are non negative Lagrange multipliers. The optimal solution is given by
the saddle point of (3.21), where (3.21) is minimized with respect to w and b, but maximized with
respect to α, meaning it satisfies the KKT conditions:

∂Q(w, b,α)
∂w

= 0; (3.22)

∂Q(w, b,α)
∂b

= 0; (3.23)

αi{yi(wTxi + b)− 1} = 0, (3.24)
αi ≥ 0, (3.25)

for all i ∈ {1, . . . , N}. From (3.24), we see that for every training data point xi, either αi = 0, or
both αi 6= 0 and yi(wTxi+b) = 1 must hold. We define a support vector to be those data points xi
such that αi 6= 0. Note that this definition excludes the cases in which αi = 0 and yi(wTxi+ b) = 1.

Using (3.21), we can evaluate (3.22) and (3.23) to yield:

w =
N∑
i=1

αiyixi, (3.26)

0 =
N∑
i=1

αiyi. (3.27)

Finally, we can plug (3.26) and (3.27) back into (3.21) to create our dual formulation

Q(α) =
N∑
i=1

αi −
1
2

N∑
i,j=1

αiαjyiyjxTi xj , (3.28)

subject to αi ≥ 0 ∀ i ∈ {1, . . . , N} and (3.27). This dual formulation of a support vector machine is
called a Hard Margin Support Vector Machine [1]. (Hard-Margin follows from the assumption
of linear separability, no points in the generalizable region, meaning that there exists a strict margin.)

Using our earlier definition of support vectors, we then create a decision function

D(x) =
∑
i∈S

αiyixTi x + b, (3.29)

24 CHAPTER 3. SUPPORT VECTOR MACHINES

where S denotes the set of support vectors, and from the KKT condition given by (3.23) applied to
(3.21), we see

b =
1

n(S)

∑
i∈S

(yi −wTxi), (3.30)

where n(S) is the number of support vectors. Then, given an unknown datum x̂, it is classified in

{
Population 1 if D(x̂) > 0,
Population 2 if D(x̂) < 0. (3.31)

Note that if D(x̂) = 0, x̂ is on the boundary and thus is unclassifiable. (However, this happens with
probability 0.)

In essence, we can think of this decision function as a process of evaluating how similar a test
point is to a given support vector. Recall that the dot product between two vectors, a and b is

a · b = ||a|| · ||b||cos(θ),

where θ is the angle in between the two vectors. So in a SVM, if the angle between a unknown point
and a support vector is large and close to 90 degrees, meaning the two vectors differ significantly
in their directions, then cos(θ) will be close to zero and that support vector will only contribute a
small amount to the end decision. On the other hand, when θ is small, the test vector and support
vector point in similar directions, and cos(θ) will be close to 1, letting that support vector influence
the decision more.

However, there are instances when cos(θ) can mis-
take two very different points as similar. Take
for example the adjacent figure, which shows two
classes in a positively sloped orientation. Notice
that the test point has a similar direction to points
in both classes, but since the magnitude of vectors
in the class further from the origin are greater,
those support vectors will have a greater influence
in the decision.

Figure 3.4: A case where cos(θ) is not enough to
evaluate similarity.

Finally, we turn our attention to the Lagrange multipliers, {αi}. These α’s can be thought of
as “weights” that we assign the different support vector, meaning that similarity to some support
vectors is more important that to other support vectors. Thus, given an unknown test point x̂,
the Support Vector Machine decision function numerically “scores” x̂ against the set of all support
vectors, and depending on the sign of the sum of all of the scores, assigns x̂ to either class 1 or 2.

3.3. L1 SOFT MARGIN SUPPORT VECTOR MACHINES 25

Figure 3.5: Soft Margin Support Vector Machines with slack variables, [1]

3.3 L1 Soft Margin Support Vector Machines

In the previous section, we assumed a largely infeasible claim, namely that our data set was linearly
separable. In real life, such data sets are hard to come by and largely uninteresting. However, there
are a a number of methods we can employ to deal with more realistic situations. One of them is
simply to allow some data to cross the separating hyperplane, using slack variables to account for
the effect on the margin. Instead of the constraints given by linear separability, equations (3.8),
consider the following constraints;

yi(wTxi + b) > 1− ξi. (3.32)

Here, if ξi = 0, then the datum xi is not inside the margin, but if ξi > 0, then the associated
xi is inside the margin. Moreover, ξi ≥ 1 implies that the datum xi is on the wrong side of the the
separating hyperplane, and xi would be incorrectly classified by our decision function.

As we want to limit the instances of training data misclassifications, our optimization problem
now becomes

Q(w, b, ξ) =
1
2
||w||2 + C

N∑
i=1

ξpi , (3.33)

subject to

yi(wTxi + b) > 1− ξi, (3.34)
ξi ≥ 0 (3.35)

26 CHAPTER 3. SUPPORT VECTOR MACHINES

There is a trade-off between how many points we allow in the margin to how big the generalizable
region can be, since we want to minimize Q(w, b, ξ). To manage this trade-off, there is an additional
parameter that needs to be chosen, C, which acts as a cost or penalty to data appearing inside the
margin or begin misclassified. Thus, if C is small, we allow more points to violate the margin and be
misclassified, whereas if C is large, the solution will shrink the margin in order to optimize (3.33).
Usually p is set to either 1 or 2; for our purposes, we will set p = 1, resulting in a L1 Soft Margin
SVM. [1]

Figure 3.6: The picture on the right was generated using a C = .01 while the picture on the left was
generated with C = 10000. The solid black line is the decision hyperplane and the dotted lines are
the margins for two classes. On the left, 85% of the points are on the wrong side of their margin,
while only 62% on the right, a result of the size of the margin. Picture from Hastie, [6].

As an aside, SVMs will find the optimum separating hyperplane that is equally far from both
classes. However, when working with LDAs, one could use cost ratios and prior probability ratios
to influence classification toward one class. Similarly, SVMs can be influenced to associate points
to a certain class only with sufficient confidence by manipulating the cost parameter C above.
Instead of having one C for all training data, each training data xi can have its own cost parameter

Ci, meaning C
N∑
i=1

ξpi −→
N∑
i=1

Ciξ
p
i in equation (3.33). (Although associating different costs to the

different classes, C1 and C2, is usually sufficient.) By penalizing misclassifications of one class more
than the other, the optimal separating hyperplane will allow more points of one class in the margin
than the other. Referring back to the earlier example mentioned last chapter, to reduce cases of
misclassifying sick patients as healthy, we can associate a cost parameter C1 to healthy training data
and C2 to sick training data, where C1 � C2. Then, sick patients will have to present with very
healthy features to be classified as healthy, while healthy patients with mildly sick features may be
classified as sick.

Returning to the construction the dual problem to this optimization, we combine (3.34) and

3.3. L1 SOFT MARGIN SUPPORT VECTOR MACHINES 27

(3.35) with (3.33) using Lagrange multipliers to create another Lagrangian function:

Q(w, b, ξ,α,β) =
1
2
||w||2 + C

N∑
i=1

ξi −
N∑
i=1

αi{yi(wTxi + b)− 1 + ξi}

−
N∑
i=1

βiξi. (3.36)

We use two sets of Lagrange multipliers, α = (α1, . . . , αN) and β = (β1, . . . , βN). The KKT
conditions for (3.36) yield

∂Q(w, b, ξ,α,β)
∂w

= 0, (3.37)

∂Q(w, b, ξ,α,β)
∂b

= 0, (3.38)

∂Q(w, b, ξ,α,β)
∂ξ

= 0, (3.39)

αi(yi(wTxi + b)− 1 + ξi) = 0, (3.40)
βiξi = 0, (3.41)

αi ≥ 0, βi ≥ 0, ξi ≥ 0. (3.42)

In an identical fashion, we use our Lagrangian function (3.36) to evaluate the partial derivatives:

w =
N∑
i=1

αiyixi, (3.43)

0 =
N∑
i=1

αiyi, (3.44)

C = αi + βi for i ∈ {1, . . . , N}. (3.45)

Using these, we can construct the dual optimization problem as

Q(α) =
n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyjxTi xj s.t.

n∑
i=1

αiyi = 0 αi ≥ 0 (3.46)

and C ≥ αi ≥ 0. (3.47)

From this, we can see that the L1 soft margin case tantamount to the hard margin case, except that
α has an upper bound. Moreover, by using equations (3.40), (3.41), (3.42), and (3.45), three types
of training data emerge [1]:

1. αi = 0. Then ξi = 0. Thus xi is correctly classified and is not a support vector.

2. 0 < αi < C. Then yi(wTxi + b) − 1 + ξi = 0 and ξi = 0. (Note that (3.45) yields that
βi = C − αi.) Thus, yi(wTxi + b) = 1 and xi is a support vector. Moreover, since C > αi,
this is an unbounded support vector.

28 CHAPTER 3. SUPPORT VECTOR MACHINES

3. C = αi. Then yi(wTxi + b) − 1 + ξi = 0 and ξi ≥ 0. Thus xi is again a support vector, but
as αi is bounded by C, this is a bounded support vector. Note that ξi ≥ 0 implies that both
the points that exist in the margin and get misclassified by our decision function are used as
support vectors.

Going back to using intuition to understand SVMs, the upper limit on the α’s means that no single
support vector can influence the decision by more than C. So, even if a support vector is very clearly
violating the decision boundary, the most it can contribute to the decision is capped by C.

The decision function for a soft margin SVM is identical to the hard margin case:

D(x) =
∑
i∈S

αiyixTx + b, (3.48)

where S is the set of all support indices. However, calculating b is slightly different; we only use the
unbounded support vectors, as we don’t have any way to bound points that are horribly misclassified:

b =
1

n(U)

∑
i∈U

(yi −wTxi), (3.49)

where U is the set of unbounded support vectors. Again, an unknown datum x̂ is classified to{
Population 1 if D(x̂) > 0,
Population 2 if D(x̂) < 0. (3.50)

3.4 Kernel Methods

Figure 3.7: A visual representation of projecting data to find a separating hyperplane, [3].

In addition to soft margin techniques, one can also use kernel methods to project data into higher
dimensions, so that a linearly separating hyperplane an be found. Consider the figure shown above.
Before projection, the data show two classes, one that is arranged in a circle around the origin, while

3.4. KERNEL METHODS 29

the other class is the space outside of the circle. Any straight line in this two dimensional graph will
not be a good classifier between the two classes. But the projection Φ : (x,y) −→ (x,y,x2 + y2)
turns the two dimensional graph into a three dimensional plot, and as the picture shows, the flat
hyperplane that goes through the origin is a linear separator for the two classes. Thus, linearly
inseparable data can be projected into a higher space such that a linear classifier can be found.

However, projecting data into higher dimensions can often be computationally infeasible, and
finding suitable projections is difficult. Note that the decision function for a SVM computes and uses
only the dot product of the training data values, motivating the use of kernels. Kernel Methods will
apply the idea of projecting data into higher dimensions without actually projecting the data; they
simply use a kernel function to compute the dot product of two points in the higher dimensional
projected space.

A natural question to ask then is which functions constitute valid kernels, or more generally, if
given some function k(x,x′), can we show that k(x,x′) = Φ(x)Φ(x′) for some higher dimensional
projection Φ? Trivially, we can calculate and expand a given kernel function explicitly and use
algebra and inspection to find the projection by hand. However, a simpler method to verify kernels
is to use Mercer’s Theorem, which states that any function with a positive semi-definite Gram
matrix has a representation as the convergent sum of product functions. Simply put, Mercer’s
Theorem allows us to classify all positive semi-definite Gram matrices as inner products on some
high dimensional Hilbert space, and consequently, the associated functions can be used as kernels.
Here, we provide a proof of a specific case of Mercer’s Theorem, which is sufficient for use in SVMs.
(For clarity, we denote the dot product between two vectors as < a,b > rather than aTb.)

Definition 3.4.1. Given a symmetric function H(x,x′) and a set of vectors {x1, . . . ,xN}, the
Gram Matrix is defined as

H(x1,x1) . . . H(x1,xm)
H(x2,x1) . . . H(x2,xm)

...
. . .

...
H(xm,x1) . . . H(xm,xm)

 = HN

Definition 3.4.2. A N ×N matrix H is called positive semi-definite if

wTHw ≥ 0

for any column vector w ∈ RN . Similarly, a function H(x,x′) is called positive semi-definite if the
Gram matrix it induces is positive semi-definite.

Theorem 3.4.3. (Abe, [1]) Let X be the input space and H(x,x′) be a positive semi-definite function
for S = {x1, . . . ,xN} ∈ X. Define H0 as the linear space spanned by the functions {Hxi

|xi ∈ S}
where

Hxi
(x) = H(xi,x).

Then there exists a Hilbert space H, which is the completion of H0, and a mapping from X to H
such that

H(x,x′) =< Hx, H
′
x > .

Theorem (3.4.3) is claiming that with any function that produces a positive semi definite Gram

30 CHAPTER 3. SUPPORT VECTOR MACHINES

matrix, a natural mapping φ to a Hilbert space H (that consists of functions) given by

φ : X −→ H, (3.51)
φ : x 7−→ Hx(x), (3.52)

equates the functions

H(x, x′) : X ×X −→ R, (3.53)
< Hx, Hx′ > : H×H −→ R, (3.54)

meaning that the functions are essentially the same, as long as the matching inputs from the proper
spaces are used.

Proof. Note that H0 is a linear space, meaning that any member of H0 can be written as a linear
combination of various Hxi

. As such, define f, g, h ∈ H0 as

f =
∑
xi∈X

ciHxi (3.55)

g =
∑

x′
j∈X

djHx′
j

(3.56)

h =
∑

x′′
k∈X

ekHx′′
k
. (3.57)

We define the dot product between two members of H0 as follows:

< f, g > =
∑

x′
j∈X

djf(x′j) (3.58)

=
∑
xi∈X

∑
x′

j∈X

cidjH(x,x′) (3.59)

=
∑
xi∈X

cig(xi) (3.60)

To show that this is a dot product, we need to show symmetry, linearity, and that < f, f > ≥ 0
with equality if f = 0 (positive-definiteness).

• Symmetry follows naturally from the definition.

• Linearity: We want to show that < f, (g + h) >=< f, g > + < f, h >.

< f, (g + h) > =
∑
xi∈X

ci(g + h)(xi)

=
∑
xi∈X

cig(xi) +
∑
xi∈X

cih(xi) (since g, h are linear)

=< f, g > + < f, h >

3.4. KERNEL METHODS 31

• Positive-Definiteness: We want to show that < f, f > ≥ 0.
Since we know that H(x,x′) is positive semi-definite, we know that

wTHNw ≥ 0 (3.61)

where HN is the Gram matrix for H(x,x′) and for any w. If we let w = [c1 . . . cN], then (3.61)
implies that ∑

xi,xj

cicjH(xi,xj) ≥ 0.

Finally, since f is a linear combination of Hxi
, we can conclude < f, f > ≥ 0.

Thus, (3.60) is the dot product, and we can use it to complete H0 to a Hilbert space H.
Lastly, (3.60) shows us that

< f,Hx >= f(x),

meaning that in particular

< Hx, H
′
x >= H(x,x’).

The above proof is very technical and requires some familiarity with functional spaces, but the
results are indeed powerful. Now we can easily check to see if a function is a kernel, namely by
checking to see that the function’s Gram matrix has non-negative eigenvalues. (Recall that any
arbitrary vector can be written as the linear combination of eigenvectors.) Moreover, as examples
of the possible kernels one can construct, the follow list shows some of the ways to combine kernels
to create new ones.

Theorem 3.4.4. (Bishop, [2]) Given two valid kernels k1(x,x′) and k2(x,x′), the following are also
valid kernels:

k(x,x′) = ck1(x,x′), (3.62)
k(x,x′) = k1(x,x′) + k2(x,x′), (3.63)
k(x,x′) = k1(x,x′)k2(x,x′), (3.64)
k(x,x′) = f(x)k1(x,x′)f(x′), (3.65)
k(x,x′) = p(k1(x,x′)), (3.66)
k(x,x′) = exp(k1(x,x′)), (3.67)
k(x,x′) = k3(Φ(x),Φ(x′)), (3.68)

k(x,x′) = xTAx′, (3.69)

where c ∈ R+, f(x) is any function, p(x) is a polynomial with non-negative coefficients, Φ(x) is a
projection in a space where k3(x,x′) is a valid kernel, and A is a symmetric positive semi-definite
matrix.

32 CHAPTER 3. SUPPORT VECTOR MACHINES

Theorem (3.4.4) lets us immediately conclude that polynomials of the form (xTx′)k are kernels
by line (3.64), since we already know that the normal dot product is a kernel. (Note that (xTx′)k is
the homogeneous polynomial containing all terms consisting of x and x′ of degree k.) More generally,
also using line (3.63) shows us that polynomials of the form (xTx′ + c)k, which contain all terms
consisting of x and x′ up to degree k, are also kernels, provided that c > 0.

Another commonly used kernel is of the form

k(x,x′) = exp

(
− γ||x− x′||2

)
(3.70)

and called the Gaussian Kernel or the Radial Basis Function Kernel. To prove that the Gaussian
kernel is valid, we can expand the square,

||x− x′||2 = xTx + (x′)Tx′ − 2xTx′,

resulting in

k(x,x′) = exp(−γxTx)exp(−γ(x′)Tx′)exp(γxTx′),

which is a valid kernel by (3.65) and (3.66). Note that the projection space that corresponds to the
Gaussian kernel has infinite dimensionality.

After having extensively covered the construction and derivation of kernels, how does one use
them in a SVM? Fortunately, they easily fit into the optimization step of a SVM formulation. We
rewrite the dual problem of a soft margin SVM, equation (3.33), since most practical applications
will use both:

maxQ(α) =
M∑
i=1

αi −
1
2

M∑
i,j

αiαjyiyjH(xi,xj) (3.71)

subject to the constraints

n∑
i=1

αiyi = 0 αi ≥ 0 C ≥ αi ≥ 0. (3.72)

Then optimizing with respect to the KKT conditions yields the decision function

D(x) =
∑
i∈S

αiyiH(xi,x) + b, (3.73)

where b is given by

b =
1

n(U)

∑
j∈U

(
yj −

N∑
i=1

αiyiH(xi,xj)

)
, (3.74)

U being the set of unbounded support vectors. (This is slightly different from the original soft
margin b.) As before,

Classify x
{

Population1 if D(x) > 0,
Population2 if D(x) < 0. (3.75)

3.5. FURTHER CONCERNS 33

Figure 3.8: Use of a kernel can significantly improve classification for a SVM. Here, we see two
examples of kernels: the picture on the left was generated with a degree four polynomial of the form
(xTx + c)4, while the picture on the right uses the Gaussian kernel. The decision hyperplane is the
solid black line, and the margins for the two classes are represented by dashed black lines. (The
margin is denoted by unbounded support vectors, the solid black points.) Note that the decision
hyperplane in the original feature space is no longer a straight line and instead curves and adapts
to the data.

3.5 Further Concerns

Kernel selection is an important aspect of training an accurate SVM. Many times it is not necessary
to even use a kernel; in text classification applications, the features extracted are words, and since
dictionaries contain tens of thousands of words, dimensionality is already high enough to usually
ensure accurate classification with just a linear soft margin SVM. However, other data sets clearly
benefit from the use of kernels, and the most commonly used kernel is the Gaussian kernel.

Consider the Gaussian kernel:

k(x,x′) = exp

(
− γ||x− x′||2

)
. (3.76)

In short, it measures similarity by the “distance” between two points, usually with the Euclidean
metric although any valid norm would work. Notice that given a certain point x̂, an infinite amount
of points give the same value of k(x̂,x), namely those that are equidistance to the point x̂. This is
the reason that this kernel is sometimes called a radial basis function. Lastly, notice that as a point
gets further and further away from x̂, the value of k(x̂,x) decreases exponentially, which is why it
is also called the Gaussian kernel.

Even though the class of kernels to be used is known, the value of σ and the cost parameter
C must still be determined or estimated. Many algorithms to find the values of these parameters
exist, and many of them simply use a hill-climbing approach to find optimal combinations of σ and

34 CHAPTER 3. SUPPORT VECTOR MACHINES

C that maximize training data accuracy. However, this returns us to the question of over-fitting :
with large values of both σ and C, one can ensure high training accuracy, but almost assuredly poor
generalization ability and classification. Striking a balance between training and test accuracy is
difficult, requires careful consideration of the data and classification model, and will differ from case
to case.

Chapter 4

Applications in R

In this chapter, we’ll use R to perform classification with Linear Discriminant Analysis and a Support
Vector Machine on a data set. The data set we’ll use is called “synth.te” ([5]) and is included in
the latest release of R. It is a two dimensional data set with 1000 observations, half from one class
1 and the other half from class 2. The data is oriented around four central points, with the lower
two groups coming from class 1 and the upper groups coming from class 2. Note that “synth.te”
was originally meant to be paired with “synth.tr” with .tr being the training set and .te being the
test set, but we will randomly select a training set from synth.te, testing our classifier on the points
that remain. Lastly, there is some overlap in between the classes, meaning that we have a linearly
inseparable data set.

Figure 4.1: Our data set. Red circles indicate observations from class 1, and blue squares are
observations from class 2.

35

36 CHAPTER 4. APPLICATIONS IN R

4.1 LDA in R

We begin with Linear Discriminant Analysis, which can be found in the MASS library. To start,
we select a random sample of 500 from our data to be our training set. Note that the lda function
in MASS will assume a common covariance matrix of the two training populations, which is in our
case,

Σ =
∣∣∣∣0.21714987 0.01868103
0.01868103 0.06993958

∣∣∣∣ (4.1)

Moreover, we assume that the prior probabilities and costs of misclassification are equal for both
classes.

Class 1 Class 2 Overall
Training
Points

242 258 500

Training x̄i (-0.17517086,0.2874690) (0.05162236,0.6924096) NA
Correctly
Classified
Test Data

233 210 443

Incorrectly
Classified
Test Data

25 32 57

Classification
Accuracy

90.31% 86.78% 88.6%

LDA classification yields good results, but as the training data looks bi-modal, the assumption
of multivariate normality reduces test accuracy. One could run two different LDA classifiers on the
two halfs of the data to correct this, or perhaps design an LDA classifier that looks at the ratio of
bi-modal distributions.

Recall that given equal costs of misclassification and prior probabilities for the two classes, we
can interpret LDA much like FDA, in that there is some other vector l̂ that is being projected onto.
This vector for our case is

l̂ = (0.5712041, 5.7619468) (4.2)

4.1. LDA IN R 37

Figure 4.2: LDA classification on our data. Class 1’s sample mean is given by the orange triangle
and Class 2’s sample mean is given by the cyan triangle. The filled in red data points are points
from class 1 that were misclassified as class 2, and similarly, the filled in blue points are datum from
class 2 that were misclassified as class 1.

38 CHAPTER 4. APPLICATIONS IN R

4.2 Support Vector Machines in R

Next, the package “e1071” in the CRAN database contains a formulation of libsvm, a Support Vector
Machine algorithm, for use in R. We will use the same test and training data from the LDA example,
and classify using a linear kernel, and a cost coefficient of C = 10.

Class 1 Class 2 Overall
Number of Support Vectors 70 70 140

Correctly Classified Test Data 235 210 445
Incorrectly Classified Test Data 23 32 55

Classification Accuracy 91.09% 86.78% 89%

As you can see, the linear SVM does little better than a straight LDA analysis.

4.2. SUPPORT VECTOR MACHINES IN R 39

Figure 4.3: A linear SVM classifier. The orange points represent support vectors from class 1, and
similarly the cyan points are support vectors for class two. The line splitting the data is a hyperplane
representing the decision function, namely D(x) = wTx + b, where w = (−0.5030882,−2.4113652).
Consequently, if a new unclassified point falls below the hyperplane, we can associate it to class 1,
and if it falls above the hyperplane, the datum can be classified as class 2.

40 CHAPTER 4. APPLICATIONS IN R

R also lets us implement different kernels in our SVM.

Polynomial - Cubic Gaussian
(((γxTx′)3) (exp(−γ||x− x′||2))

Gamma .5 .5
Number Class 1: 79 Class 1: 56
of Support Class 2: 78 Class 2: 58
Vectors Overall:157 Overall: 114
Correctly Class 1: 220 Class 1: 242
Classified Class 2: 228 Class 2: 216
Test Data Overall: 448 Overall: 458
Incorrectly Class 1: 38 Class 1: 16
Classified Class 2: 14 Class 2: 26
Test Data Overall: 52 Overall: 42
Classification Class 1: 85.27% Class 1: 93.8%
Accuracy Class 2: 94.21% Class 2: 89.26%

Overall: 89.6% Overall: 91.6%
w (136.9053, -173,2019) (-1.022526, -13.773888)

Using a kernel doesn’t vastly improve accuracy in either case; this could be due to the fact that the
data is split almost linearly, meaning that using a polynomial can only help marginally, or hurt as
was the case here. But notice that the radial kernel will return the highest accuracy rates.

4.2. SUPPORT VECTOR MACHINES IN R 41

Figure 4.4: A comparison between a cubic kernel and a Gaussian one. Note that the pattern of
support vectors differs between the two, and each differs from the linear kernel. Also, the decision
hyperplane has been omitted from the pictures, since it would no longer be a straight line in the
original feature space.

42 CHAPTER 4. APPLICATIONS IN R

Lastly, we will consider the question of how more or less training data effect classification
accuracy. The tables below show average accuracies for the four types of classifier shown before over
500 random samplings of training sets of size n:

LDA Linear SVM Polynomial SVM Radial SVM
n = 975 88.62% 88.72% 89.33% 92.1%
n = 950 88.05% 88.11% 88.65% 91.82%
n = 900 88.37% 88.45% 89.4% 91.84%
n = 750 88.48% 88.62% 89.08% 91.84%
n = 600 88.63% 88.78% 89.11% 91.78%
n = 500 88.62% 88.79% 88.91% 91.67%
n = 250 88.76% 88.83% 88.33% 91.32%
n = 100 88.82% 88.52% 87.23% 90.51%
n = 50 88.48% 87.84% 85.53% 89.35%
n = 25 87.79% 86.54% 83.17% 86.76%

Unsurprisingly, classification accuracy is decreased with decreased amounts of training data;
with less points to train a model on, it makes sense that a model’s predicative power lowers. More
surprising is the variability between accuracy rates for linear models versus kernel models. Both the
LDA and Linear SVM have less than 2.5% change between its highest and lowest accuracy rates,
but the Polynomial and Kernel SVMs have around 6% change between its highest and lowest rates,
dipping below the accuracy of both linear models. This may be a result of the complexity of the
model versus the simplicity of the data.

It is also worth nothing the nature of the different trends of the different classifiers. Discounting
the case where n = 975, every classifier reaches its highest accuracy rate when n is closer to 500
except for the radial classifier, whose accuracy seems to be an nearly monotonic function of the size
of the training set.

Lastly, as a caveat to this simulation, remember that the size of the training set is inversely
proportional to the size of the test set. More simulations on distinct test and training sets would
lead to more definitive answers.

Chapter 5

Conclusion

To say that there remain many other issues when classifying data would be an understatement.

In this thesis, we have covered three types of classification techniques, one using probability
ratios, another using dimensionality reduction, and finally one using the maximum margin. How-
ever, numerous other classification techniques exist, such as decision tree models or neural networks.
Many classification tasks will warrant their own custom classifier, mixing and matching aspects of
many classifiers, to best adapt to their specific challenges. That said, many people do consider
Support Vector Machines a benchmark to evaluate new classifiers. Given their relatively simplicity,
their ability to use kernels to model many different types of data, and most importantly, their sparse
learning technique using support vectors which speeds up the computation time of new classifica-
tions, it’s not hard to see why.

However, a drawback to SVMs is that their construction only assumes two groups, so extending
this model to classify many different groups often decreases its effectiveness. Two ways to extend
classification to multiple groups are commonly used. One of them is called the “one against all”
formulation, meaning that you pick a group, and pool every data point that isn’t in that group into
a separate group and try to classify. If there is only one positive classification, then we can classify
that point, but if more than one or no positive results occur, the point is unclassifiable. The other is
called “pairwise” formulation, meaning that you attempt to classify a point using all possible pairs
of groups and if there is a group that the point is classified into the most often, then that group is
the final classification. Both of these methods can create large regions that are unclassifiable. Many
current research questions involve trying to find optimal classifications for these “unclassifiable”
regions.

Lastly, even though this thesis has covered much of the mathematics behind classification, it is
still very much an art because classification seeks to name the unknown. Our best hope then is to
use the tools at our disposal as carefully as we can. But even when selecting which model to follow
or the values of certain parameters, many trade-offs exist between competing goals. Experience is
essential to obtain good classification, and I hope this thesis has encouraged more exploration of the
subject.

43

44 CHAPTER 5. CONCLUSION

45

I would like to thank my advisor, Jo Hardin, for introducing me to classification and working
with me throughout the year. Thesis would have been much more difficult without her motivation
and guidance. Additionally, I would like to thank the math department for the last four years of
morning classes and late night problem sets. Finally, as Kathy will probably be the only one to
get this far anyways, thank you Kathy for running the department and keeping everyone sane in
Millikan.

46 CHAPTER 5. CONCLUSION

Bibliography

[1] Shigeo Abe. Support Vector Machines for Pattern Classification. Springer Verlag, London,
England, 2005.

[2] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer Science+Business
Media, LLC, 2006.

[3] Sean Luke Keith M. Sullivan. Evolving kernels for support vector machine classification. GECCO
’07: Proceedings of the 9th annual conference on Genetic and evolutionary computation, pages
1702–1707, 1990.

[4] Dean W. Wichern Richard A. Johnson. Applied Multivariate Statistical Analysis. Prentice-Hall,
Inc., 3rd edition, 1992.

[5] B.D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, 1996.

[6] Jerome Friedman Trevor Hastie, Robert Tibshirana. The Elements of Statistical Learning: Data
Mining, inference, and Prediction. Springer Verlag, 2001.

47

