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Abstract

Hypothesis-error (or “HE”) plots, introduced by Friendly (2006, 2007), permit the visualization of
hypothesis tests in multivariate linear models by representing hypothesis and error matrices of sums of
squares and cross-products as ellipses. This paper describes the implementation of these methods in R,
as well as their extension, for example from two to three dimensions and by scaling hypothesis ellipses
and ellipsoids in a natural manner relative to error. The methods, incorporated in the heplots package
for R, exploit new facilities in the car package for testing linear hypotheses in multivariate linear models
and for constructing MANOVA tables for these models, including models for repeated measures.

1 Introduction

This paper introduces the heplots package for R, which implements and extends the methods described in
Friendly (2006, 2007) for visualizing hypothesis tests in multivariate linear models. The paper begins with a
brief description of multivariate linear models; proceeds to explain how dispersion matrices can be represented
by ellipses or ellipsoids; describes new facilities in the car package (associated with Fox, 2002) for testing
linear hypotheses in multivariate linear models and for constructing multivariate analysis-of-variance tables;
and illustrates the use of the functions in the heplots package for two and three-dimensional visualization
of hypothesis tests in multivariate analysis of variance and regression.

2 Multivariate Linear Models

The univariate linear model
y=XB+e (1)

is surely the most familiar of statistical models. In Equation 1, y is an n X 1 column vector of observations
on a response variable; X is an n X p model matrix of full column rank that is either fixed or, if random,
independent of the n x 1 vector of errors e; and the p X 1 vector of regression coefficients 8 is to be
estimated from the data.. As is also familiar, under the standard assumptions that the errors are normally
and independently distributed with zero expectations and common variance, €; ~ NID(0, 02) or equivalently
e ~ N, (0,0%1,), the least squares estimator,

B=X"X)"'X"y

is the maximum-likelihood estimator of 3. Here, N, denotes the multivariate-normal distribution for n
variables, 0 is the n x 1 zero vector, and I,, is the order-n identity matrix.
In the multivariate linear model (e.g., Timm, 1975),

Y=XB+E

the response vector y is replaced by an n x m matrix of responses Y, where each column represents a distinct
response variable, B is a p X m matrix of regression coefficients, and E is an n X m matrix of errors. Under the



assumption that the rows of E are independent, and that each row is multivariately normally distributed with
zero expectation and common covariance matrix, e/ ~ N, (0, X) or equivalently vec(E) ~ N,,,(0,1, ® ¥),
the least squares estimator R
B=(X"X)"'X"TYy
is the maximume-likelihood estimator or B. Here, the 0 vectors are respectively of order n x 1 and np X 1,
and ® represents the Kronecker product.
Hypothesis tests for multivariate linear models also closely parallel those for univariate linear models.

Consider the linear hypothesis
Hy: LB=0

in the univariate linear model, where L is a ¢ x p hypothesis matrix of rank ¢ and 0 is the ¢ x 1 zero vector.
Under this hypothesis,

B LTL(X"X)"'L"]'LB
F() _ q _ SSH/q
T SSg/(n —p)
n—p

~T _ _ ~
is distributed as F with ¢ and n — p degrees of freedom. The quantity $Sy = 8 LT[L(X"X) 'L7]'L3
is the sum of squares for the hypothesis, € = y — X3 is the vector of residuals, SSg = g% is the sum of
squares for error, and s2 = ETE/ (n — p) is the estimated error variance. To test the analogous hypothesis in

the multivariate linear model,
Hy: LB=0 (2)

where 0 is now the ¢ X m zero matrix, we compute the m x m hypothesis sum of squares and products matrix
SSPy = B'LT[L(X"X)'L”]'LB
and the m x m error sum of squares and products matrix
SSPy = ETE

where E = Y — XB is the matrix of residuals. Multivariate tests of the hypothesis are based on the
s = min(q, m) nonzero latent roots Ay > Ay > -+ > A4 of the matrix SSPy relative to the matrix SSP g,
that is, the values of A for which

det(SSPy — ASSPg) =0

These are also the ordinary latent roots of of SSP HSSPE, that is, the values of A for which
det(SSPySSP,! — A1,,) =0

The corresponding latent vectors give a set of s orthogonal linear combinations of the responses that pro-
duce maximal univariate F' statistics for the hypothesis in Equation 2. The several commonly employed
multivariate test statistics are functions of the latent roots:

P
s
Pillai’s trace, Tp = z
F ;1 Y
Hotelling-Lawley trace, Ty = 25:1 Aj
P
1
Wilks’s Lambda, A= ng Y

Roy’s maximum root, A1

There is an F' approximation to the null distribution of each of these test statistics.

In a univariate linear model, it is common to provide F' tests for each term in the model, summarized in
an analysis-of-variance (ANOVA) table. The hypothesis sums of squares for these tests can be expressed as
differences in the error sums of squares for nested models. For example, dropping each term in the model



in turn and contrasting the resulting residual sum of squares with that for the full model produces so-called
Type-III tests; adding terms to the model sequentially produces so-called Type-I tests; and testing each term
after all terms in the model with the exception of those to which it is marginal produces so-called Type-II
tests. Closely analogous multivariate analysis-of-variable (MANOVA) tables can be formed similarly by
taking differences in error sum of squares and products matrices.

In some contexts — for example, when the response variables represent repeated measures of the same
variable over time — it is also of interest to entertain a design and hypotheses on the response (see, e.g.,
O’Brien and Kaiser, 1985). Such tests can be formulated by extending the linear hypothesis in Equation 2
to

Hy: LBP =0

where the m x k matrix P provides contrasts in the responses.

3 Data Ellipses and Ellipsoids

The data ellipse, described by Dempster (1969) and Monette (1990), is a device for visualizing the relationship
between two variables, Y7 and Y2. Let D2,(y) = (y — ¥)TS™(y — ¥) represent the squared Mahalanobis
distance of the point y = (y1,%2)” from the centroid of the data ¥ = (Y1,Y2)”. The data ellipse &, of size
c is the set of all points y with D32, (y) less than or equal to c?:

EyiSy) ={y y-9)'S ' y-y) <} (3)
Here, S is the sample covariance matrix,

g 2y —_?)1T<y ~Y)

Selecting ¢ = 1 produces the “standard” data ellipse, as illustrated in Figure 1: The perpendicular
“shadows” of the ellipse on the axes mark off twice the standard deviation of each variable; the regression
line for Y5 on Y7 intersects the points of vertical tangency on the boundary of the ellipse; and the correlation
between the two variables is proportional to the length of the line from the bottom of the ellipse to the point
of vertical tangency at the right. Many other properties of correlation and regression can be visualized using
the data ellipse (see, e.g., Monette, 1990).

These properties of the data ellipse hold regardless of the joint distribution of the variables, but if the
variables are bivariate normal, then the data ellipse represents a contour of constant density in their joint
distribution. In this case, D3,(y) has a large-sample x? distribution with 2 degrees of freedom, and so, for
example, taking c? = x3(0.95) = 5.99 ~ 6 encloses approximately 95 percent of the data. Alternatively, in

small samples, we can take
= MFQ,TL72 ~ 25 52
n—2

but this typically makes little difference visually.

The generalization of the data ellipse to more than two variables is immediate: Applying Equation 3 to
y = (y1,v2,93)T, for example, produces a data ellipsoid in three dimensions. For m multivariate-normal
variables, selecting ¢? = x2, (1 — a) encloses approximately 100(1 — ) percent of the data. Again, for greater
precision, we can use

CQ = Mme—m ~ mFm,n—m
n—m

4 Implementation of Tests for Multivariate Linear Models in the
car Package

Tests for multivariate linear models are implemented in the car package as S3 methods for the generic
linear.hypothesis and Anova functions, with Manova provided as a synonym for the latter. The Anova
function computes partial (so-called “Types IT and III”) hypothesis tests, as opposed to the anova function in
the stats package, which computes sequential (“Type-I") tests; these tests coincide in one-way and balanced
designs. Several examples of the use of these functions are given in this section.
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Figure 1: The standard data ellipse, showing the standard deviation of each variable (s; and sg), their
means (given by the solid black dot), the line for the regression of Y5 on Y7, and the correlation between the
variables (r).

4.1 One-Way MANOVA: Romano-British Pottery

Tubb, Parker, and Nickless (1980)(Tubb et al., 1980) used atomic absorption spectrophotometry to analyze
data on the element composition of 26 samples of Romano-British pottery found at four different kiln sites
in Britain with a view to determining if the chemical content of aluminium, iron, magnesium, calcium and
sodium could differentiate those sites; see also Hand et al (1994: 252). If so, the chemical content of pottery
of unknown origin might be used for classification purposes. The data thus comprise a one-way MANOVA
design with four groups and five response variables.

The data for this example are in the data frame Pottery in the car package:

> library(heplots)
> Pottery

Site Al Fe Mg Ca Na

1 Llanedyrn 14.4 7.00 4.30 0.15 0.51
2 Llanedyrn 13.8 7.08 3.43 0.12 0.17
3 Llanedyrn 14.6 7.09 3.88 0.13 0.20

25 AshleyRails 14.8 2.74 0.67 0.03 0.05
26 AshleyRails 19.1 1.64 0.60 0.10 0.03

> table(Pottery$Site)

AshleyRails Caldicot IsleThorns Llanedyrn
5 2 5 14

The ellipses in the output (. . .) represent elided lines.

In R, multivariate linear models are fit by the 1m function, returning an object of class mlm. Here, we fit
a one-way MANOVA model to the Pottery data. The print method for the object returned by the Anova
function gives a brief display of the multivariate test for Site, using the Pillai trace statistic by default. A
more detailed display, including the SSPy and SSPr matrices and all four multivariate tests is provided



by the summary method for Anova.mlm objects (suppressing the univariate test for each response, which is
given by default):

> pottery.mod <- 1m(cbind(Al, Fe, Mg, Ca, Na) ~ Site, data=Pottery)
> Anova(pottery.mod)

Type II MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)
Site 3 1.5539  4.2984 15 60 2.413e-05 *x*x*

Signif. codes: 0 ’*%%’ 0.001 ’**x’ 0.01 ’%’ 0.05 ’.” 0.1’ ’ 1

> # All 4 multivariate tests
> summary (Anova(pottery.mod), univariate=FALSE, digits=4)

Type II MANOVA Tests:

Sum of squares and products for error:

Al Fe Mg Ca Na
Al 48.2881 7.08007 0.60801 0.10647 0.58896
Fe 7.0801 10.95085 0.52706 -0.15519 0.06676
Mg 0.6080 0.52706 15.42961 0.43538 0.02762
Ca 0.1065 -0.15519 0.43538 0.05149 0.01008
Na 0.5890 0.06676 0.02762 0.01008 0.19929

Term: Site

Sum of squares and products for the hypothesis:
Al Fe Mg Ca Na
Al 175.610 -149.296 -130.810 -5.8892 -5.3723
Fe -149.296 134.222 117.745 4.8218 5.3259
Mg -130.810 117.745 103.351 4.2092 4.7105
Ca -5.889 4.822 4.209 0.2047 0.1548
Na -5.372 5.326 4.711 0.1548 0.2582

Multivariate Tests: Site
Df test stat approx F num Df den Df Pr(>F)

Pillai 3.00 1.55 4.30 15.00 60.00 2.41e-05 *x*x*
Wilks 3.00 0.01 13.09 15.00 50.09 1.84e-12 *xx*
Hotelling-Lawley 3.00 35.44 39.38 15.00 b50.00 < 2e-16 *xx
Roy 3.00 34.16 136.64 5.00 20.00 9.44e-15 *xx*
Signif. codes: 0 ’*x*x’ 0.001 ’*%’ 0.01 ’%’ 0.05 ’.” 0.1’ > 1

In this instance, we get the same test from the anova function in the standard stats package, because
(as mentioned) for this one-factor design, the sequential test provided by anova is the same as the Type-II
test provided by default by Anova:

> anova(pottery.mod)

Analysis of Variance Table

Df Pillai approx F num Df den Df Pr(>F)
(Intercept) 1 0.99 523.07 5 18 < 2.2e-16 **x*



Site 3 1.55 4.30 15 60 2.413e-05 *x*
Residuals 22

Signif. codes: O ’**x’ 0.001 ’**x’ 0.01 ’x’> 0.05 ’.” 0.1’ > 1

There is, therefore, strong evidence against the null hypothesis of no differences in mean vectors across
sites.

4.2 Two-Way MANOVA: Plastic Film Data

For a slightly more complex example, we use textbook data from Johnson and Wichern (1992: 266) on an
experiment conducted to determine the optimum conditions for extruding plastic film. Three responses (tear
resistance, film gloss, and opacity) were measured in relation to two factors: rate of extrusion (Low/High)
and amount of an additive (Low/High). Again, the data are in the heplots package:

> Plastic

tear gloss opacity rate additive

1 6.5 9.5 4.4 Low Low
2 6.2 9.9 6.4 Low Low
3 5.8 9.6 3.0 Low Low
4 6.5 9.6 4.1 Low Low
5 6.5 9.2 0.8 Low Low
6 6.9 9.1 5.7 Low High
7 7.2 10.0 2.0 Low High
8 6.9 9.9 3.9 Low High
9 6.1 9.5 1.9 Low High
10 6.3 9.4 5.7 Low High
11 6.7 9.1 2.8 High Low
12 6.6 9.3 4.1 High Low
13 7.2 8.3 3.8 High Low
14 7.1 8.4 1.6 High Low
15 6.8 8.5 3.4 High Low
16 7.1 9.2 8.4 High High
17 7.0 8.8 5.2 High High
18 7.2 9.7 6.9 High High
19 7.5 10.1 2.7 High High
20 7.6 9.2 1.9 High High

We fit the two-way MANOVA model and display the Anova results, using Roy’s maximum root test.
Both main effects are significant, but their interaction is not:

> plastic.mod <- Ilm(cbind(tear, gloss, opacity) ~ rate*additive, data=Plastic)
> Anova(plastic.mod, test.statistic="Roy")

Type II MANOVA Tests: Roy test statistic
Df test stat approx F num Df den Df Pr(>F)

rate 1 1.6188  7.5543 3 14 0.003034 *x
additive 1 0.9119  4.2556 3 14 0.024745 *
rate:additive 1 0.2868 1.3385 3 14 0.301782
Signif. codes: O ’*%x’ 0.001 ’*x’ 0.01 ’*’ 0.05 ’.” 0.1 7 ’ 1

Again, we get the same tests from anova, this time because the data are balanced (so that sequential
and Type-II tests coincide):



> anova(plastic.mod, test="Roy")

Analysis of Variance Table

Df Roy approx F num Df den Df Pr(>F)

(Intercept) 1 1275.2  5950.9 3 14 < 2.2e-16 **x
rate 1 1.6 7.6 3 14 0.003034 =*x
additive 1 0.9 4.3 3 14 0.024745 x*
rate:additive 1 0.3 1.3 3 14 0.301782
Residuals 16

Signif. codes: O ’*%*’ 0.001 ’*%’ 0.01 ’%’ 0.05 *>.” 0.1’ ’ 1

4.3 Multivariate Multiple Regression and MANCOVA: Rohwer Data

In multivariate multiple regression, the X matrix contains quantitative predictors, while in multivariate
analysis of covariance (MANCOVA), there is a mixture of factors and quantitative predictors (covariates). To
illustrate, we use data from a study by Rohwer (given in Timm, 1975: Ex. 4.3, 4.7, and 4.23) on kindergarten
children, designed to determine how well a set of paired-associate (PA) tasks predicted performance on the
Peabody Picture Vocabulary test (PPVT), a student achievement test (SAT), and the Raven Progressive
matrices test (Raven). The PA tasks varied in how the stimuli were presented, and are called named (n),
still (s), named still (ns), named action (na), and sentence still (ss). Two groups were tested: a group of
n = 37 children from a low socioeconomic status (SES) school, and a group of n = 32 high SES children from
an upper-class, white residential school. The data are in the data frame Rohwer in the heplots package:

> Rohwer

group SES SAT PPVT Raven n s ns na ss

1 1 Lo 49 48 8 1 2 6 12 16

1 Lo 47 76 13 5 14 14 30 27
3 1 Lo 11 40 13 0 10 21 16 16
68 2 Hi 98 74 156 2 6 14 25 17
69 2 Hi 50 78 19 5 10 18 27 26

Initially (and optimistically), we fit the MANCOVA model that allows different means for the two SES
groups on the responses, but constrains the slopes for the PA covariates to be equal.

> rohwer.mod <- 1m(cbind (SAT, PPVT, Raven) ~ SES + n + s + ns + na + ss,
+ data=Rohwer)
> Anova(rohwer.mod)

Type II MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)

SES 1 0.3785 12.1818 3 60 2.507e-06 **x*

n 1 0.0403 0.8400 3 60 0.477330

s 1 0.0927  2.0437 3 60 0.117307

ns 1 0.1928 4.7779 3 60 0.004729 *x

na 1 0.2313 6.0194 3 60 0.001181 *x

ss 1 0.0499 1.0504 3 60 0.376988

Signif. codes: O ’*%x’ 0.001 ’*x’ 0.01 ’*> 0.05 ’.” 0.1’ ’ 1

This multivariate linear model is of interest because, although the multivariate tests for two of the
covariates (ns and na) are highly significant, univariate multiple regression tests for the separate responses
[from summary(rohwer.mod)] are relatively weak. We can test the 5 df hypothesis that all covariates have
null effects for all responses as a linear hypothesis (suppressing display of the error and hypothesis SSP
matrices),



> Regr <- linear.hypothesis(rohwer.mod, diag(7)[3:7,])
> print (Regr, digits=5, SSP=FALSE)

Multivariate Tests:
Df test stat approx F num Df den Df Pr(>F)

Pillai 5.00 0.6658 3.5369 15.00 186.00 2.309e-05 **x*
Wilks 5.00 0.4418 3.8118 15.00 166.03 8.275e-06 **x
Hotelling-Lawley 5.00 1.0309 4.0321 15.00 176.00 2.787e-06 ***
Roy 5.00 0.7574 9.3924 5.00 62.00 1.062e-06 **x
Signif. codes: 0 ’*%%’ 0.001 ’**x’ 0.01 ’%’ 0.05 ’.” 0.1’ * 1

As explained, in the MANCOVA model rohwer.mod we have assumed homogeneity of slopes for the
predictors, and the test of SES relies on this assumption. We can test this as follows, adding interactions of
SES with each of the covariates:

> rohwer.mod2 <- 1m(cbind(SAT, PPVT, Raven) ~ SES * (n + s + ns + na + ss),
+ data=Rohwer)
> Anova(rohwer.mod2)

Type II MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)

SES 1 0.3912 11.7822 3 55 4.55e-06 *x**
n 1 0.0790 1.5727 3 55 0.2063751

s 1 0.1262  2.6248 3 55 0.0595192 .
ns 1 0.2541 6.2461 3 55 0.0009995 *x*x*
na 1 0.3066 8.1077 3 55 0.0001459 *x**
ss 1 0.0602 1.1738 3 55 0.3281285
SES:n 1 0.0723 1.4290 3 55 0.2441738
SES:s 1 0.0994  2.0240 3 55 0.1211729
SES:ns 1 0.1176  2.4425 3 55 0.0738258 .
SES:na 1 0.1480 3.1850 3 55 0.0308108 *
SES:ss 1 0.0573 1.1150 3 55 0.3509357
Signif. codes: O ’**x’ 0.001 ’**x’ 0.01 ’x’> 0.05 ’.” 0.1’ > 1

It appears from the above that there is only weak evidence of unequal slopes from the separate SES:
terms. The evidence for heterogeneity is stronger, however, when these terms are tested collectively using
the linear.hypothesis function:

> (coefs <- rownames (coef (rohwer.mod2)))

[1] n (Intercept) n "SESLO" HnlI HSH IlnSll
[6] "na" "ss" "SESLo:n" "SESLo:s" "SESLo:ns"
[11] "SESLo:na" "SESLo:ss"

> print(linear.hypothesis(rohwer.mod2, coefs[grep(":", coefs)]), SSP=FALSE)

Multivariate Tests:
Df test stat approx F num Df den Df Pr(>F)

Pillai 5.0000 0.417938 1.845226 15.0000 171.0000 0.0320861 =*
Wilks 5.0000 0.623582 1.893613 15.0000 152.2322 0.0276949 *
Hotelling-Lawley 5.0000 0.538651 1.927175 15.0000 161.0000 0.0239619 *
Roy 5.0000 0.384649 4.384997 5.0000 57.0000 0.0019053 *x*
Signif. codes: O ’*%x’ 0.001 ’*x’ 0.01 ’x’ 0.05 ’.” 0.1 7 ’ 1



4.4 Repeated-Measures MANOVA: O’Brien and Kaiser’s Data

O’Brien and Kaiser (1985: Table 7) describe an imaginary study in which 16 female and male subjects, who
are divided into three treatments, are measured on an unspecified response variable at a pretest, post-test,
and a follow-up session; during each session, they are measured at five occasions at intervals of one hour.
The design, therefore, has two between-subject and two within-subject factors. The data are in the data
frame OBrienKaiser in the car package:

> OBrienKaiser

treatment gender pre.l pre.2 pre.3 pre.4 pre.5 post.l post.2 post.3 post.4 post.5
1 control M 1 2 4 2 1 3 2 5 3 2
2 control M 4 4 5 3 4 2 2 3 5 3
3 control M 5 6 5 7 7 4 5 7 5 4
4 control F 5 4 7 5 4 2 2 3 5 3
5 control F 3 4 6 4 3 6 7 8 6 3
6 A M 7 8 7 9 9 9 9 10 8 9
7 A M 5 5 6 4 5 7 7 8 10 8
8 A F 2 3 5 3 2 2 4 8 6 5
9 A F 3 3 4 6 4 4 5 6 4 1
10 B M 4 4 5 3 4 6 7 6 8 8
11 B M 3 3 4 2 3 5 4 7 5 4
12 B M 6 7 8 6 3 9 10 11 9 6
13 B F 5 5 6 8 6 4 6 6 8 6
14 B F 2 2 3 1 2 5 6 7 5 2
15 B F 2 2 3 4 4 6 6 7 9 7
16 B F 4 5 7 5 4 7 7 8 6 7
fup.1 fup.2 fup.3 fup.4 fup.b
1 2 3 2 4 4
2 4 5 6 4 1
3 7 6 9 7 6
4 4 4 5 3 4
5 4 3 6 4 3
6 9 10 11 9 6
7 8 9 11 9 8
8 6 6 7 5 6
9 5 4 7 5 4
10 8 8 9 7 8
11 5 6 8 6 5
12 8 7 10 8 7
13 7 7 8 10 8
14 6 7 8 6 3
15 7 7 8 6 7
16 7 8 10 8 7

The contrasts specified for each between-subject factor correspond to what was employed in the original
source:

> contrasts(OBrienKaiser$treatment)

[,11 [,2]
control -2 0
A 1 -1
B 1 1



> contrasts(0OBrienKaiser$gender)

[,1]
F 1
M-

We fit a multivariate linear model to the O’Brien and Kaiser data, using

> mod.ok <- I1m(cbind(pre.1, pre.2, pre.3, pre.4, pre.5,

+ post.1, post.2, post.3, post.4, post.5,
+ fup.1, fup.2, fup.3, fup.4, fup.5) ~ treatment*gender,
+ data=0BrienKaiser)

As for the anova method for mlm objects, the factors defining the design on the response variables (the
“intra-subject” or “within-subject” design) are given as a data frame via the idata argument to Anova.
In contrast to anova, however, the intra-subject design itself is given to Anova as a model formula via
the idesign argument. This is a simpler approach but slightly less flexible: Anova requires that different
terms in the model matrix generated from idata and idesign are orthogonal to one another, although the
contrasts for each term need not be orthogonal: The model matrix for the intra-subject design is therefore
block-orthogonal. This will be the case for the default contrast types that Anova employs for the intra-subject
design: contr.sum for factors and contr.poly for ordered factors. For the current example,

> phase <- factor(rep(c("pretest", "posttest", "followup"), c(5, 5, 5)),
+ levels=c("pretest", "posttest", "followup"))

> hour <- ordered(rep(1:5, 3))

> idata <- data.frame(phase, hour)

> idata

phase hour
pretest
pretest
pretest
pretest
pretest
posttest
posttest
posttest
posttest
posttest
followup
12 followup
13 followup
14 followup
15 followup
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The MANOVA employing this intra-subject data frame along with a crossed design on the intra-subject
factors phase and hour is obtained as follows:

(av.ok <- Anova(mod.ok, idata=idata, idesign="phase*hour, type="III"))

Type III Repeated Measures MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)

(Intercept) 1 0.967 296.389 1 10 9.241e-09 **¥x*
treatment 2 0.441 3.940 2 10 0.0547069 .
gender 1 0.268 3.659 1 10 0.0848003 .
treatment:gender 2 0.364 2.855 2 10 0.1044692

10



phase 1 0.814 19.645 2 9 0.0005208 *x*x*
treatment:phase 2 0.696 2.670 4 20 0.0621085 .
gender:phase 1 0.066 0.319 2 9 0.7349696
treatment:gender:phase 2 0.311 0.919 4 20 0.4721498
hour 1 0.933 24.315 4 7 0.0003345 *x*x*
treatment:hour 2 0.316 0.376 8 16 0.9183275
gender :hour 1 0.339 0.898 4 7 0.5129764
treatment:gender:hour 2 0.570 0.798 8 16 0.6131884
phase:hour 1 0.560 0.478 8 3 0.8202673
treatment:phase:hour 2 0.662 0.248 16 8 0.9915531
gender:phase:hour 1 0.712 0.925 8 3 0.5894907
treatment:gender:phase:hour 2 0.793 0.328 16 8 0.9723693
Signif. codes: O ’*%*’ 0.001 ’*%’ 0.01 ’%’ 0.05 >.” 0.1’ ’ 1

The Type-III tests correspond to the example presented in O’Brien and Kaiser (1985), and depend upon
using contrasts for the between-subject factors that are orthogonal in the row-basis of the model matrix, as
is the case for the contrasts (contr.sum and contr.poly) employed in the example.

The summary method for Anova.mlm is also capable of computing the traditional mixed-model F' tests
for repeated measures under the assumption of compound symmetry: that is, that the covariance matrix
of the responses has equal diagonal elements (variances) and equal off-diagonal elements (covariances —
implying constant correlation between measures). The output includes traditional Greenhouse-Geiser and
Huynh-Feldt corrections for departures from compound symmetry:

summary(av.ok, multivariate=FALSE)

Univariate Type III Repeated-Measures ANOVA Assuming Compound Symmetry

SS num Df Error SS den Df F Pr(>F)
(Intercept) 6759.3 1 228.1 10 296.3888 9.241e-09 ***
treatment 179.7 2 228.1 10  3.9405 0.054707 .
gender 83.4 1 228.1 10 3.6591 0.084800 .
treatment:gender 130.2 2 228.1 10 2.8555 0.104469
phase 129.5 2 80.3 20 16.1329 6.732e-05 **xx*
treatment:phase 77.9 4 80.3 20 4.8510 0.006723 *xx*
gender:phase 2.3 2 80.3 20 0.2828 0.756647
treatment:gender:phase 10.2 4 80.3 20 0.6366 0.642369
hour 104.3 4 62.5 40 16.6857 4.027e-08 *x**
treatment:hour 1.2 8 62.5 40 0.0933 0.999245
gender:hour 2.8 4 62.5 40 0.4503 0.771559
treatment:gender:hour 7.8 8 62.5 40 0.6204 0.755484
phase:hour 11.3 8 96.2 80 1.1799 0.321587
treatment:phase:hour 6.6 16 96.2 80 0.3453 0.990125
gender:phase:hour 9.0 8 96.2 80 0.9313 0.495612
treatment:gender:phase:hour 14.2 16 96.2 80 0.7359 0.749562
Signif. codes: O ’***’ 0.001 ’*%’ 0.01 ’x’ 0.05 *>.” 0.1’ ’ 1
Greenhouse-Geisser and Huynh-Feldt Corrections
for Departure from Compound Symmetry

GG eps Pr(>F[GG])

phase 0.79953 0.0002814 *xx*

treatment:phase 0.799563 0.0126909 =*
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.79953
.79953
.46028
treatment :hour .46028
gender:hour .46028

gender:phase 0

0

0

0

0
treatment:gender:hour 0.46028

0

0

0

0.

treatment:gender:phase
hour

phase:hour .44950
treatment:phase:hour .44950
gender:phase:hour .44950
treatment:gender:phase:hour 0.44950

Signif. codes: 0 ’**%’ 0.001 ’**x’ 0O

O OO OO OO WwOoOOo

.7089599
.6116209
.763e-05 *x*x*
.9786227
.6284344
.6413625
.3345212
.9303725
.4490777
.6463449

.01 ’%’ 0.05 >.” 0.1 ’ 1

HF eps Pr(>F[HF])

phase 0.92786
treatment:phase 0.92786
gender:phase 0.92786
treatment:gender:phase 0.92786
hour 0.55928
treatment:hour 0.55928
gender:hour 0.55928
treatment:gender:hour 0.55928
phase:hour 0.73306
treatment:phase:hour 0.73306
gender:phase:hour 0.73306
treatment:gender:phase:hour 0.73306

Signif. codes: 0 ’***’ 0.001 ’**x’ 0O

0.
.0084388 *x*
. 7408568
.6319975
.301e-05 **x
.9886617
.6645541
.6692976
.3296590
.9752254
.4780341
.7080122

O OO O OOONOOOo

0001125 *xx

.01 ’%’ 0.05 >.” 0.1 ’ 1

5 Hypothesis-Error (HE) Plots

Hypothesis-error (or HE) plots use ellipses to represent hypothesis and error sums of squares and product
matrices. The plots are implemented in two and three dimensions in the heplots package for R.

The error ellipse is obtained by dividing the SSP g by the error degrees of freedom n — p, producing a
data ellipse for the residuals. The SSP g ellipse is also centered at the grand means, allowing individual
factor means to be shown on the same plot, facilitating interpretation.

We consider two scalings of the hypothesis ellipse:

1. “Evidence-based” scaling, the default, in which the hypothesis ellipse protrudes from the error ellipse
if and only if the hypothesis can be rejected by the Roy maximum-root criterion. The directions
in which the hypothesis ellipse exceed the error ellipse are informative about the responses or their
linear combinations that depart significantly from Hy. This scaling is produced by dividing SSPy by
Aa(n — p), where A\, is the critical value of Roy’s statistic for a test at level a.

2. Scaling by “effect size,” where the hypothesis ellipse is put on the same scale as the error ellipse, and
approximately represents the data ellipse of fitted values under the alternative hypothesis. Here, SSP g

is simply divided by n — p.

All of this extends straightforwardly to the three dimensional case.

5.1 HE Plots for the Pottery Data

The Romano-British pottery data were described in Section 4.1. Recall that there are four response variables
representing the chemical content of aluminium, iron, magnesium, calcium, and sodium in 26 samples of
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Figure 2: HE plot for pottery data, showing iron and aluminum. H (i.e., SSPy) matrices: solid lines; E
(i.e., SSP ) matrix, dashed lines.

pottery from four kiln sites. For two response variables, we can use heplot to visualize the (co)variation
due to the Site hypothesis — (co)variation of the group means, relative to error — (co)variation of the
residuals. As illustrated below, we can also visualize the results of linear hypotheses related to subsets of
the parameters.

> # Figure 2

> heplot (pottery.mod)

> # add a 2 df hypothesis

> heplot (pottery.mod, terms=FALSE, add=TRUE, col="blue",
+  hypotheses=list("Caldicot & Isle Thormns" =

+ c("SiteCaldicot = 0", "SiteIsleThorns=0")))

> # add two 1 df hypotheses

> heplot(pottery.mod, terms=FALSE, add=TRUE, col="magenta",
+  hypotheses=list("C-A" = "SiteCaldicot",

+ "I-A" = "SiteIsleThorns")

+ )

Figure 2 shows the plot of the SSPy and SSP g matrices for two of the variables, iron and aluminum,
and the means for the four sites. In addition, it shows the SSPy matrices for linear hypotheses related to
Caldicot and IsleThorns, where Ashley Rails is the baseline category. It is clear that the sites differ primarily
in terms of a contrast between Caldicot and Llanedryn vs. Ashley Rails and Isle Thorns, and that the means
on these two chemical components are negatively related, while the pooled within group scatter shows a
weak positive relation.

Figure 3 illustrates the difference between effect-size scaling and (the default) evidence-based scaling of
SSPy relative to SSP g, produced using

> # Figure 3: compare evidence and effect scaling
> heplot (pottery.mod)
> heplot(pottery.mod, add=TRUE, size="effect", col="darkgreen")

13
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Figure 3: HE plot for pottery data: Effect scaling (dark green) vs. evidence scaling (light green).

The evidence-scaled hypothesis ellipse for this one-way MANOVA model is the data ellipse for the group
means weighted by group sample sizes.
Of course, other pairs of response variables can also be displayed (e.g., heplot (pottery.mod, variables=c("Mg",
"Fe")), or subsets of three response variables can be examined (by heplot3d(pottery.mod, variables=c(...)
— see below). Alternatively, the variation across sites on all chemical components may be seen in the pair-
wise 2D projections of the HE plot matrix in Figure 4. This graph was produced by the pairs method for
mlm objects, reordering the variables to produce a more coherent display (Friendly and Kwan, 2003):

> # Figure 4
> pairs(pottery.mod, variables=c("Mg","Fe","Ca","Na","A1"))

Quite a lot may be read directly from this plot. For example: the site means for magnesium (Mg) and
iron (Fe) are nearly perfectly correlated, and have the same pattern with all other variables, while all mean
differences for aluminium (Al) are in the opposite direction. The relations for calcium (Ca) and sodium (Na)
also differ somewhat from those for magnesium and iron in that Caldicot samples are quite high on calcium,
while Llanedryn is high on sodium.

5.2 HE Plots for the Plastic Data

HE plots are particularly instructive when there are multiple sources of hypothesis variation to be tested in a
multivariate linear model. The simplest case is for a 2 x 2 MANOVA, where the main effects and interaction
each have 1 df (and so, the SSPy ellipses or ellipsoids collapse to lines), but where the response variable
space is 2 or more dimensional. The plastic-film data were introduced in Section 4.2. There are, recall,
two dichotomous factors (rate of extrusion and amount of an additive) and three response variables (tear
resistance, film gloss, and opacity).

In Figure 5, we show the HE plot for the first two response variables (tear and gloss). In this plot, we
overlay the size="evidence" and size="effect" scalings, varying line width. Note that, in this view, the
effect for additive does not extend outside the error ellipse.
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Figure 4: pairs HE plot matrix for the pottery data.
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Figure 5: HE plot for tear and gloss in the Plastic data. Thick lines: evidence scaling; thin lines: effect
scaling.

> # Figure 5: Compare evidence and effect scaling
> heplot(plastic.mod, size="evidence")
> heplot(plastic.mod, size="effect", add=TRUE, lwd=8, term.labels=FALSE)

In addition to linear hypotheses that decompose multiple-df tests into their constituents (as in Figure
2), we can also compose linear hypotheses by summing effects. Figure 6, for example adds SSP g ellipses
corresponding to the sum of main effects (additive+rate) and for the variation of all four groups, as if in
a one-way design.

# Figure 6: Ellipses for composite effects:
# Group=rate*additive and Main=rate+additive
heplot(plastic.mod, hypotheses=list ("Group" =

c("rateHigh", "additiveHigh", "rateHigh:additiveHigh")))
heplot(plastic.mod, hypotheses=list("Main" =

c("rateHigh", "additiveHigh")), terms=FALSE,

add=TRUE, col="orange")

+ + VvV + Vv VvV

Again, we can see the (co)variation due to hypothesis and error for all response variables in the pairs
plot (see Figure 7). Note that the effect of additive, while significant in the multivariate test does not quite
protrude beyond the SSP ellipse in any of these 2D projections.

> # Figure 7
> pairs(plastic.mod)

Using heplot3d, we can easily find 3D views of all effects that show the significant effects of both
additive and rate, as shown in Figure 8.

> # Figure 8
> heplot3d(plastic.mod)
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Figure 6: HE plot for tear and gloss, showing the SSP ; matrices for the summed Main effects and for all
Groups.

5.3 HE Plots for the Rohwer Data

The ideas behind HE plots extend naturally to multivariate multiple regression and multivariate analysis of
covariance. To illustrate, we turn to the Rohwer data, introduced in Section 4.3.

A 2D view of the additive MANCOVA model that we fit to the Rohwer data and the overall test for all
covariates is provided in Figure 9, produced using heplot as follows:

> # Figure 9

> colors <- c("red", "blue", rep("black",5), "darkgrey")

> heplot (rohwer.mod, col=colors,

+ hypotheses=list(”Regr" = C("Il", "S”, "IIS", unan’ ”SS"))

+ )

This display immediately extends to all 2D views using pairs (Figure 10) and to a 3D plot using heplot3d
(Figure 11). It may be seen that the predicted values for all three responses are positively correlated, and
that the hypothesized effects of the covariates span the full three dimensions of the responses. As well, the
High SES group is higher on all responses than the Low SES group.

> # Figures 10 and 11
> pairs(rohwer.mod, col=colors,

+ hypotheses=list(”Regr” = c(”n", ”S", ”IlS", "na", "SS”)))
> heplot3d(rohwer.mod, col=colors,
+ hypotheses=list(”Regr” = C("I’l”, "S”, "IlS”, ”na”, "SS”)))

In Section 4.3, we also fit a model to the Rohwer data relaxing the assumption of equal slopes — that is,
permitting interactions between the covariates and SES. There are several options for visualization: Either
we can fit and display separate models for the High and Low SES groups (which also allows the within-groups
error-covariance matrices to differ); we can fit a combined model with separate intercept and slopes for the
two groups, which assumes a common within-groups error-covariance matrix; or we can try to visualize the
slope differences in the heterogeneous-slopes model rohwer .mod2. Choosing the last option, we examine the
HE pairs plot in Figure 12. To simplify this display, we show the hypothesis ellipses for the overall effects
of the PA tests in the baseline high-SES group, and a single combined ellipse for all the SESLo: interaction
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Figure 7: HE pairs plot for the Plastic data.
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Figure 8: heplot3d plot for the Plastic data.
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Figure 9: HE plot for SAT and PPVT in the Rohwer data. The ellipse labeled Regr shows the combined effect
of the covariates.

terms that we tested previously, representing differences in slopes between the low and high-SES groups.
Because SES is “treatment-coded” in this model, the ellipse for each covariate represents the hypothesis that
the slopes for that covariate are zero in the high-SES baseline category.

> # Figure 12
> pairs(rohwer.mod2, col=c(colors, "brown"),

+ terms=c(”SES”, unn’ "S", ”IlS", "na”, "SS”),
+ hypotheses=1ist("Regr" = c("n", "s", "ns", "na", "ss"),
+ "Slopes" = coefs[grep(":", coefs)]))

Comparing Figures 10 and 12 for the homogeneous and heterogenous-slopes models, it may be seen that
most of the covariates have ellipses of similar size and orientation, reflecting similar evidence against the
null hypotheses in the baseline high-SES group and for both groups in the common-slopes model; so too
does the effect of SES, with the High SES group performing better on all measures. The error covariation is
noticeably smaller in some of the panels of Figure 12 (those for SAT and PPVT), reflecting additional variation
accounted for by differences in slopes.
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Figure 10: HE pairs plot for the Rohwer data.
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Figure 11: heplot3d plot for the Rohwer data.
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Figure 12: pairs plot for heterogeneous regression model rohwer .mod2. The ellipses labeled “Slopes” show
the covariation of all terms for slope differences between the High and Low SES groups.
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