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Abstract

Linear Discriminant Analysis (LDA) is a
well-known method for dimensionality reduc-
tion and classification. LDA in the binary-
class case has been shown to be equiva-
lent to linear regression with the class label
as the output. This implies that LDA for
binary-class classifications can be formulated
as a least squares problem. Previous stud-
ies have shown certain relationship between
multivariate linear regression and LDA for
the multi-class case. Many of these studies
show that multivariate linear regression with
a specific class indicator matrix as the out-
put can be applied as a preprocessing step
for LDA. However, directly casting LDA as
a least squares problem is challenging for the
multi-class case. In this paper, a novel for-
mulation for multivariate linear regression is
proposed. The equivalence relationship be-
tween the proposed least squares formulation
and LDA for multi-class classifications is rig-
orously established under a mild condition,
which is shown empirically to hold in many
applications involving high-dimensional data.
Several LDA extensions based on the equiv-
alence relationship are discussed.

1. Introduction

Linear Discriminant Analysis (LDA) is a well-known
method for dimensionality reduction and classifica-
tion that projects high-dimensional data onto a low-
dimensional space where the data achieves maximum
class separability (Duda et al., 2000; Fukunaga, 1990;
Hastie et al., 2001). The derived features in LDA are
linear combinations of the original features, where the
coefficients are from the transformation matrix. The
optimal projection or transformation in classical LDA
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is obtained by minimizing the within-class distance
and maximizing the between-class distance simultane-
ously, thus achieving maximum class discrimination.
It has been applied successfully in many applications
(Belhumeour et al., 1997; Swets & Weng, 1996; Du-
doit et al., 2002) including face recognition and mi-
croarray gene expression data analysis. The optimal
transformation is readily computed by solving a gener-
alized eigenvalue problem. The original LDA formula-
tion, known as the Fisher Linear Discriminant Analy-
sis (FLDA) (Fisher, 1936) deals with binary-class clas-
sifications. The key idea in FLDA is to look for a
direction that separates the class means well (when
projected onto that direction) while achieving a small
variance around these means.

FLDA bears strong connections to linear regression
with the class label as the output. It has been shown
(Duda et al., 2000; Mika, 2002) that FLDA is equiva-
lent to a least squares problem. Many real-world appli-
cations deal with multi-class classifications, and LDA
is generally used to find a subspace with k − 1 dimen-
sions for multi-class problems, where k is the num-
ber of classes in the training dataset (Fukunaga, 1990;
Hastie et al., 2001). However, directly casting LDA as
a least squares problem is challenging for multi-class
problems (Duda et al., 2000; Hastie et al., 2001; Zhang
& Riedel, 2005).

Multivariate linear regression with a specific class in-
dicator matrix has been considered in (Hastie et al.,
2001) for multi-class classifications. It follows the gen-
eral framework of linear regression with multiple out-
puts. As pointed out in (Pages 83–84, Hastie et al.
(2001)), this approach has a serious problem when the
number of classes k ≥ 3, especially prevalent when k
is large. More specifically, classes can be masked by
others due to the rigid nature of the regression model,
which is not the case for LDA (Hastie et al., 2001).
This multivariate linear regression model is in general
different from LDA. However, there is a close connec-
tion between multivariate linear regression and LDA.
More specifically, it can be shown (Hastie et al., 1994;
Hastie et al., 2001) that LDA applied to the trans-
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formed space by multivariate linear regression with a
specific class indicator matrix as the output is identi-
cal to LDA applied to the original space. In this case,
multivariate linear regression is applied as a prepro-
cessing step for LDA. One natural question is whether
LDA in the multi-class case can be directly formulated
as a least squares problem.

In this paper, we propose a novel formulation for multi-
variate linear regression based on a new class indicator
matrix. We establish the equivalence relationship be-
tween the proposed least squares formulation and LDA
under a mild condition (see Section 5), which holds in
many applications involving high-dimensional and un-
dersampled data. We call the proposed LDA formula-
tion Least Squares Linear Discriminant Analysis (or
LS-LDA in short). We have conducted experiments
using a collection of high-dimensional datasets from
various data sources, including text documents, face
images, and microarray gene expression data. Experi-
mental results are consistent with the presented theo-
retical analysis.

2. Overview of Linear Discriminant

Analysis

Given a dataset that consists of n samples
{(xi, yi)}n

i=1, where xi ∈ IRd, and yi ∈ {1, 2, · · · , k} de-
notes the class label of the i-th sample, n is the sample
size, d is the data dimensionality, and k is the number
of classes. Let the data matrix X = [x1, x2, · · · , xn] be
partitioned into k classes as X = [X1, · · · ,Xk], where
Xj ∈ IRd×nj , nj is the size of the j-th class Xj , and
∑k

j=1 nj = n. Classical LDA computes a linear trans-

formation G ∈ IRd×ℓ that maps xi in the d-dimensional
space to a vector xL

i in the ℓ-dimensional space as fol-
lows: xi ∈ IRd → xL

i = GT xi ∈ IRℓ (ℓ < d). In
discriminant analysis (Fukunaga, 1990), three scatter
matrices, called within-class, between-class and total
scatter matrices are defined as follows:

Sw =
1

n

k
∑

j=1

∑

x∈Xj

(x − c(j))(x − c(j))T , (1)

Sb =
1

n

k
∑

j=1

nj(c
(j) − c)(c(j) − c)T , (2)

St =
1

n

n
∑

i=1

(xi − c)(xi − c)T , (3)

where c(j) is the centroid of the j-th class, and c is
the global centroid. It follows from the definition that
St = Sb + Sw. Furthermore, trace(Sw) measures the
within-class cohesion, while trace(Sb) measures the

between-class separation. In the lower-dimensional
space resulting from the linear transformation G, the
scatter matrices become

SL
w = GT SwG, SL

b = GT SbG, SL
t = GT StG. (4)

An optimal transformation G would maximize
trace(SL

b ) and minimize trace(SL
w) simultaneously,

which is equivalent to maximizing trace(SL
b ) and mini-

mizing trace(SL
t ) simultaneously, since SL

t = SL
w +SL

b .

The optimal transformation, GLDA, of LDA is com-
puted by solving the following optimization problem
(Duda et al., 2000; Fukunaga, 1990):

GLDA = arg max
G

{

trace
(

SL
b (SL

t )−1
)}

. (5)

The optimal GLDA consists of the top eigenvectors
of S−1

t Sb corresponding to the nonzero eigenvalues
(Fukunaga, 1990), provided that the total scatter ma-
trix St is nonsingular. In the following discussion, we
consider the more general case when St may be singu-
lar. GLDA consists of the eigenvectors of S+

t Sb corre-
sponding to the nonzero eigenvalues. Here S+

t denotes
the pseudo-inverse of St (Golub & Van Loan, 1996).
Note that when St is nonsingular, S+

t equals S−1
t .

The above LDA formulation is an extension of the
original Fisher Linear Discriminant Analysis (FLDA)
(Fisher, 1936), which deals with binary-class problems,
i.e., k = 2. The optimal transformation, GF , of FLDA
is of rank one and is given by (Duda et al., 2000)

GF = S+
t (c(1) − c(2)). (6)

Note that GF is invariant of scaling. That is, αGF ,
for any α 6= 0 is also a solution to FLDA.

3. Linear Regression versus Fisher LDA

Given a dataset of two classes, {(xi, yi)}n
i=1, xi ∈ IRd,

and yi ∈ {−1, 1}, the linear regression model with
the class label as the output has the following form:
f(x) = xT w + b, where w ∈ IRd is the weight vector,
and b is the bias of the linear model. A popular ap-
proach for estimating w and b is the least squares, in
which the following objective function is minimized:

L(w, b) =
1

2
||XT w + be − y||2 =

1

2

n
∑

i=1

||f(xi) − yi||2,

(7)

where X = [x1, x2, · · · , xn] is the data matrix, e is the
vectors of all ones, and y is the vector of class labels.
Assume that both {xi} and {yi} have been centered,
i.e.,

∑n
i=1 xi = 0 and

∑n
i=1 yi = 0. It follows that

yi ∈ {−2n2/n, 2n1/n} ,
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where n1 and n2 denote the number of samples from
the negative and positive classes, respectively. The
bias term b becomes zero and we look for a linear model
f(x) = xT w by minimizing

L(w) =
1

2
||XT w − y||2. (8)

The optimal w is given by (Duda et al., 2000; Golub &

Van Loan, 1996; Hastie et al., 2001) w =
(

XXT
)+

Xy.
Note that XXT = nSt (data matrix X has been cen-
tered) and Xy = 2n1n2

n
(c(1) − c(2)). It follows that

w =
2n1n2

n2
S+

t (c(1) − c(2)) =
2n1n2

n2
GF ,

where GF is the optimal solution to FLDA in Eq. (6).
Hence linear regression with the class label as the out-
put is equivalent to Fisher LDA, as the projection in
FLDA is invariant of scaling. More details on this
equivalence relationship can be found at (Duda et al.,
2000; Mika, 2002).

4. Multivariate Linear Regression with

a Class Indicator Matrix

In the multiclass case, we are given a dataset that
consists of n samples {(xi, yi)}n

i=1, where xi ∈ IRd,
and yi ∈ {1, 2, · · · , k} denotes the class label of the
i-th sample, and k > 2. It is common to apply lin-
ear regression of a class membership indicator ma-
trix Y ∈ IRn×k, which applies a vector valued class
code for each of the samples (Hastie et al., 2001).
There are several well-known indicator matrices in
the literature. Denote Y1 = (Y1(ij))ij ∈ IRn×k and

Y2 = (Y2(ij))ij ∈ IRn×k as the class indicator matri-
ces as follows: Y1(ij) = 1, if yi = j, and Y1(ij) = 0,
otherwise; and Y2(ij) = 1, if yi = j, and Y2(ij) =
−1/(k − 1), otherwise. The first indicator matrix Y1

is commonly used in connecting multi-class classifica-
tion with linear regression (Hastie et al., 2001), while
the second indicator matrix has recently been used in
extending Support Vector Machines (SVM) to multi-
class classification (Lee et al., 2004) and in generalizing
the kernel target alignment measure (Guermeur et al.,
2004), originally proposed in (Cristianini et al., 2001).

In multivariate linear regression (MLR), a k-tuple of
separating functions f(x) = (f1(x), f2(x), · · · , fk(x)),
for any x ∈ IRd is considered. Denote X̃ =

[x̃1, · · · , x̃n] ∈ IRd×n, and Ỹ =
(

Ỹij

)

∈ IRn×k as

the centered data matrix X and the centered indi-
cator matrix Y , respectively. That is, x̃i = xi − x̄
and Ỹij = Yij − Ȳj , where x̄ = 1

n

∑n

i=1 xi and Ȳj =
1
n

∑n
i=1 Yij . Then MLR determines the weight vectors,

{wj}k
j=1 ∈ IRd, of the k linear models, fj(x) = xT wj ,

for j = 1, · · · , k, via the minimization of the following
objective function:

L(W ) =
1

2
||X̃T W − Ỹ ||2F =

1

2

k
∑

j=1

n
∑

i=1

||fj(x̃i) − Ỹij ||2,

(9)

where W = [w1, w2, · · · , wk] is the weight matrix, and
|| · ||F denotes the Frobenius norm of a matrix (Golub
& Van Loan, 1996). The optimal W is given by (Hastie
et al., 2001)

W =
(

X̃X̃T
)+

X̃Ỹ , (10)

which is determined by X̃ and Ỹ .

Both Y1 and Y2 defined above, as well as the one in
(Park & Park, 2005) could be used to define the cen-
tered indicator matrix Ỹ . An interesting connection
between the linear regression model using Y1 and LDA
can be found in (Page 112, Hastie et al. (2001)). It
can be shown that if XL = WT

1 X̃ is the transformed

data by W1, where W1 =
(

X̃X̃T
)+

X̃Ỹ1 is the least

squares solution in Eq. (10) using the centered indica-
tor matrix Ỹ1, then LDA applied to XL is identical to
LDA applied to the original space. In this case, lin-
ear regression is applied as a preprocessing step before
the classification, and is in general not equivalent to
LDA. The second indicator matrix Y2 has been used
in SVM, and the resulting model using Y2 is also not
equivalent to LDA in general. This is also the case for
the indicator matrix in (Park & Park, 2005). A nat-
ural question is whether there exists a class indicator
matrix Ỹ ∈ IRn×k, with which the multivariate linear
regression is equivalent to LDA. If this is the case, then
LDA can be formulated as a least squares problem in
the multi-class case.

Note that in multivariate linear regression, each x̃i is
transformed to (f1(x̃i), · · · , fk(x̃i))

T
= WT x̃i, and the

centered data matrix X̃ ∈ IRd×n is transformed to
WT X̃ ∈ IRk×n, thus achieving dimensionality reduc-

tion if k < d. Note that W =
(

X̃X̃T
)+

X̃Ỹ . A natu-

ral measure for evaluating Ỹ is the class discrimination
used in LDA. We thus look for Ỹ which solves the fol-
lowing optimization problem: (The pseudo-inverse is
applied to deal with the singular scatter matrix.)

maxỸ trace((WT SbW )(WT StW )+)

subject to W =
(

X̃X̃T
)+

X̃Ỹ (11)

In the following, we construct a specific class indica-
tor matrix Y3 and show that it solves the optimiza-
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tion problem in Eq. (11). More importantly, we show
in Section 5 that multivariate linear regression us-
ing indicator matrix Y3 is equivalent to LDA under
a mild condition, which has been shown empirically
to hold for most high-dimensional and undersampled
data. The indicator matrix Y3 = (Y3(ij))ij ∈ IRn×k is
constructed as follows:

Y3(ij) =







√

n
nj

−
√

nj

n
if yi = j,

−
√

nj

n
otherwise,

(12)

where nj is the sample size of the j-th class, and n is
the total sample size. It can be shown that Y3 defined
above has been centered (in terms of rows), and thus
Ỹ3 = Y3.

Define matrices Hw, Hb, and Ht as follows:

Hw =
1√
n

[X1 − c(1)(e(1))T , · · · ,Xk − c(k)(e(k))T ],(13)

Hb =
1√
n

[
√

n1(c
(1) − c), · · · ,

√
nk(c(k) − c)], (14)

Ht =
1√
n

(X − ceT ), (15)

where Xj is the data matrix of the j-th class, X is
the data matrix, c(j) is the centroid of the j-th class,
c is the global centroid, e(j) is the vector of all ones of
length nj and e is the vector of all ones of length n.
Then Sw, Sb, and St can be expressed as follows:

Sw = HwHT
w , Sb = HbH

T
b , St = HtH

T
t .

Let Ht = UΣV T be the Singular Value Decomposition
(SVD) (Golub & Van Loan, 1996) of Ht, where Ht is
defined in Eq. (15), U and V are orthogonal, Σ =
diag(Σt, 0), Σt ∈ IRt×t is diagonal, and t = rank(St).
Then

St = HtH
T
t = UΣΣT UT = Udiag(Σ2

t , 0)UT . (16)

Let U = (U1, U2) be a partition of U , such that U1 ∈
IRd×t and U2 ∈ IRd×(d−t). That is, U2 lies in the null
space of St, i.e., UT

2 StU2 = 0. Since St = Sb + Sw,
we have 0 = UT

2 StU2 = UT
2 SbU2 + UT

2 SwU2. Thus
UT

2 SbU2 = 0, since Sw is positive semi-definite. It
follows that

UT SbU =

(

UT
1 SbU1 0

0 0

)

. (17)

Denote

B = Σ−1
t UT

1 Hb ∈ IRt×k, (18)

where Hb is defined in Eq. (14) and let

B = P Σ̂QT (19)

be the SVD of B, where P and Q are orthogonal and
Σ̂ ∈ IRt×k is diagonal. Since Sb = HbH

T
b , we have

Σ−1
t UT

1 SbU1Σ
−1
t = BBT = P Σ̂Σ̂T PT = PΣbP

T ,
(20)

where

Σb = Σ̂Σ̂T = diag(α2
1, · · · , α2

t ), (21)

α2
1 ≥ · · · ≥ α2

q > 0 = α2
q+1 = · · · = α2

t , (22)

and q = rank(Sb).

It follows from Eqs. (16) and (17) that

S+
t SbS

+
t = U1Σ

−2
t UT

1 SbU1Σ
−2
t UT

1

= U1Σ
−1
t

(

PΣbP
T
)

Σ−1
t UT

1 , (23)

where the last equality follows from Eq. (20). We have
the following result:

Lemma 4.1. Let P , U1, Σt, X̃, and Ỹ be defined as
above. Then WT SbW = 1

n2 FT ΣbF , and WT StW =
1

n2 FT F , where W is defined in Eq. (10), Σb is defined

in Eq. (21), and F = PT Σ−1
t UT

1 (X̃Ỹ ).

We are now ready to present the main result of this
section, that is Ỹ = Y3, solves the optimization prob-
lem in Eq. (11), where Y3 is defined in Eq. (12), as
summarized in the following theorem:

Theorem 4.1. Let Sb, St, Σb, W , and Ỹ be defined as
above. Then for any Ỹ , the following inequality holds:
trace

(

(WT SbW )(WT StW )+
)

≤ trace(Σb). Further-

more, the equality holds when Ỹ = Y3, where Y3 is
defined in Eq. (12).

With Ỹ = Y3 as the class indicator matrix, the optimal
weight matrix WMLR for multivariate linear regression
(MLR) in Eq. (10) becomes

WMLR =
(

X̃X̃T
)+

X̃Ỹ = (nSt)
+nHb = S+

t Hb.

(24)

5. Relationship between Multivariate

Linear Regression and LDA

Recall that in LDA, the optimal transformation ma-
trix, GLDA, consists of the top eigenvectors of S+

t Sb

corresponding to the nonzero eigenvalues. In this sec-
tion, we study the relationship between WMLR =
S+

t Hb in Eq. (24) and the eigenvectors of S+
t Sb. From

Eqs. (16) and (17), we can decompose matrix S+
t Sb as

follows:

S+
t Sb =U

(

Σ−1
t BBT Σt 0

0 0

)

UT

=U

(

Σ−1
t P 0
0 I

)(

Σb 0
0 0

)(

PT Σt 0
0 I

)

UT



Least Squares Linear Discriminant Analysis

where the equalities follow since

B = Σ−1
t UT

1 Hb = P Σ̂QT

is the SVD of B as in Eq. (19) and Σb = Σ̂Σ̂T . Thus,
the transformation matrix in LDA is given by GLDA =
U1Σ

−1
t Pq, where Pq consists of the first q columns of P ,

since only the first q diagonal entries of Σb is nonzero.
On the other hand,

S+
t Hb = U

(
(

Σ2
t

)−1
0

0 0

)

UT Hb

= U1Σ
−1
t

(

Σ−1
t UT

1 Hb

)

= U1Σ
−1
t B

= U1Σ
−1
t P Σ̂QT

= U1Σ
−1
t Pq

[

Σ̂q, 0
]

QT

=
[

GLDAΣ0.5
bq , 0

]

QT , (25)

where Σ̂q,Σbq ∈ IRq×q consists of the first q rows

and the first q columns of Σ̂,Σb, respectively, the fifth
equality follows since only the first q rows and the first
q columns of Σ̂ are nonzero and the last equality fol-
lows since Σb = Σ̂Σ̂T . It follows that

WMLR =
[

GLDAΣ0.5
bq , 0

]

QT ,

where Q is orthogonal.

The K-Nearest-Neighbor (K-NN) algorithm (Duda
et al., 2000) based on the Euclidean distance is com-
monly applied as the classifier in the dimensionality re-
duced (transformed) space of LDA. If we apply WMLR

for dimensionality reduction before K-NN, the matrix
WMLR is invariant of an orthogonal transformation,
since any orthogonal transformation preserves all pair-
wise distance. Thus WMLR is essentially equivalent

to
[

GLDAΣ0.5
bq , 0

]

or GLDAΣ0.5
bq , as the removal of zero

columns does not change the pairwise distance either.
The essential difference between WMLR and GLDA is
thus the diagonal matrix Σ0.5

bq .

Next, we show that matrix Σbq is an identity matrix
of size q, that is, WMLR and GLDA are essentially
equivalent, under a mild condition that the rank dif-
ference of the three scatter matrices is zero, that is,
rank(Sb) + rank(Sw) − rank(St) = 0, which holds in
many applications involving high-dimensional and un-
dersampled data (Ye & Xiong, 2006). The main result
is summarized in the following theorem:

Theorem 5.1. Let Σbq ∈ IRq×q consist of the first q
rows and the first q columns of Σb as defined above,
where Σb is defined in Eq. (21). Assume that the fol-
lowing equality holds: rank(Sb)+rank(Sw)−rank(St) =
0. Then Σbq = Iq, where Iq is the identity matrix of
size q and q = rank(Sb).

6. Experiments

We performed our experimental studies using nine
high-dimensional datasets, including text documents,
face images, and gene expression data. DOC1, DOC2,
and DOC3 are three text document datasets; ORL,
AR, and PIX are three face image datasets; and
GCM, ALL, and ALLAML are three gene expression
datasets. The statistics of the datasets are summa-
rized in Table 1 (the first column).

To compare LS-LDA and LDA, we use the K-NN algo-
rithm with K = 1 as the classifier. For all datasets, we
performed our study by repeated random splittings of
the whole dataset into training and test sets as in (Du-
doit et al., 2002). The data was partitioned randomly
into a training set, where each class consists of two-
thirds of the whole class and a test set with each class
consisting of one-third of the whole class. The splitting
was repeated 10 times and the resulting accuracies of
different algorithms for the ten splittings are summa-
rized in Table 1. The rank difference of three scatter
matrices, i.e., rank(Sb) + rank(Sw)− rank(St), as well
as the ratio of the largest to the smallest diagonal en-
tries of Σ0.5

bq , for each of the splitting is also reported.
Recall from Theorem 5.1 that when the rank differ-
ence of the scatter matrices is zero, matrix Σbq equals
to the identity matrix and the ratio of the largest to
the smallest diagonal entries of Σ0.5

bq is 1.

We can observe from Table 1 that the rank difference,
rank(Sb)+rank(Sw)−rank(St), equals zero in all cases
except the DOC2 dataset. For most datasets, the n
data points are linearly independent, i.e., rank(St) =
n − 1. In this case, the k centroids are also linearly
independent, i.e., rank(Sb) = k − 1, while in Sw,
each data point is subtracted by its class centroid and
rank(Sw) = n − k. Hence, the rank difference is zero.
Furthermore, LS-LDA and LDA achieve the same clas-
sification performance for all cases when the rank dif-
ference is zero. The empirical result confirms the the-
oretical analysis in Section 5. For DOC2, LS-LDA and
LDA still achieve the same classification performance,
although the rank difference is not zero.

Recall that the value of ratio denotes the ratio of the
largest to the smallest diagonal entries of the matrix
Σ0.5

bq . From Table 1, the value of ratio equals 1 for all
cases when the rank difference is zero. This is consis-
tent with the theoretical result in Theorem 5.1. For
DOC2, where the rank difference is not zero for sev-
eral cases, the value of ratio is close to 1 for all cases.
That is, matrix Σ0.5

bq is close to the identity matrix.
This explains why LS-LDA and LDA achieve the same
classification performance for DOC2, even though the
rank difference is not zero.
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Table 1. Comparison of classification accuracy (in percentage) between LS-LDA and LDA. Ten different splittings into
training and test sets of ratio 2:1 (for each of the k classes) are applied. The rank difference (Diff) of three scatter
matrices, i.e., rank(Sb)+rank(Sw)− rank(St), for each splitting, as well as the ratio of the largest to the smallest diagonal
entries of Σ0.5

bq , is reported. n is the total sample size, d is the data dimensionality, and k is the total number of classes.

Dataset Method/ratio/Diff Ten different splittings into training and test sets of ratio 2:1

DOC1 LS-LDA 93.33 93.33 91.52 95.15 94.55 93.94 93.94 95.15 93.33 93.33
n = 490 LDA 93.33 93.33 91.52 95.15 94.55 93.94 93.94 95.15 93.33 93.33
d = 3759 ratio 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
k = 5 Diff 0 0 0 0 0 0 0 0 0 0
DOC2 LS-LDA 75.93 67.59 78.70 78.70 80.56 76.85 81.48 85.19 84.26 81.48
n = 320 LDA 75.93 67.59 78.70 78.70 80.56 76.85 81.48 85.19 84.26 81.48
d = 2887 ratio 1.010 1.023 1.013 1.019 1.019 1.013 1.010 1.000 1.010 1.000
k = 4 Diff 1 1 1 1 1 1 1 0 1 0
DOC3 LS-LDA 95.71 1.000 1.000 97.14 97.14 97.14 97.14 1.000 98.57 92.86
n = 210 LDA 95.71 1.000 1.000 97.14 97.14 97.14 97.14 1.000 98.57 92.86
d = 7455 ratio 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
k = 7 Diff 0 0 0 0 0 0 0 0 0 0
ORL LS-LDA 90.00 90.00 92.50 97.50 95.00 94.17 92.50 92.50 96.67 94.17
n = 400 LDA 90.00 90.00 92.50 97.50 95.00 94.17 92.50 92.50 96.67 94.17
d = 10304 ratio 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
k = 40 Diff 0 0 0 0 0 0 0 0 0 0
AR LS-LDA 96.50 97.50 95.50 94.50 94.00 91.50 94.00 94.50 93.00 92.50
n = 650 LDA 96.50 97.50 95.50 94.50 94.00 91.50 94.00 94.50 93.00 92.50
d = 8888 ratio 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
k = 50 Diff 0 0 0 0 0 0 0 0 0 0
PIX LS-LDA 94.44 95.56 92.22 96.67 100.0 98.89 95.56 95.56 95.56 94.44
n = 300 LDA 94.44 95.56 92.22 96.67 100.0 98.89 95.56 95.56 95.56 94.44
d = 10000 ratio 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
k = 300 Diff 0 0 0 0 0 0 0 0 0 0
GCM LS-LDA 76.92 81.54 73.85 69.23 78.46 76.92 84.62 78.46 76.92 86.15
n = 198 LDA 76.92 81.54 73.85 69.23 78.46 76.92 84.62 78.46 76.92 86.15
d = 16063 ratio 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
k = 14 Diff 0 0 0 0 0 0 0 0 0 0
ALL LS-LDA 97.56 1.000 96.34 97.56 96.34 98.78 98.78 97.56 98.78 97.56
n = 248 LDA 97.56 1.000 96.34 97.56 96.34 98.78 98.78 97.56 98.78 97.56
d = 12559 ratio 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
k = 6 Diff 0 0 0 0 0 0 0 0 0 0
ALLAML LS-LDA 100.0 91.67 95.83 83.33 91.67 95.83 91.67 95.83 95.83 83.33
n = 72 LDA 100.0 91.67 95.83 83.33 91.67 95.83 91.67 95.83 95.83 83.33
d = 4106 ratio 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
k = 4 Diff 0 0 0 0 0 0 0 0 0 0

7. Conclusion and Discussion

In this paper, we analyze the relationship between
multi-class LDA and multivariate linear regression.
Specifically, we show that under a mild condition,
which has been shown empirically to hold for many
high-dimensional and undersampled data, multi-class
LDA is equivalent to multivariate linear regression
with a specific class indicator matrix. That is, un-
der the given condition, multi-class LDA can be
formulated as a least squares problem, which ex-
tends previous equivalence result for the binary-class
case. Our experimental studies on high-dimensional
datasets confirm the presented theoretical analysis.

The presented analysis can be extended in several di-
rections. Regularization is commonly applied to stabi-
lize the sample covariance matrix estimation and im-
prove the classification performance of LDA (Fried-
man, 1989). Regularization using the L2-norm penalty
can also be applied in linear regression, which is known
as ridge regression (Hoerl & Kennard, 1970). Based

on the equivalence result established in this paper, we
obtain the following formulation for regularized LDA:

L2(W,γ) =
1

2

k
∑

j=1

(

1

n

n
∑

i=1

||x̃T
i wj − Y3(ij)||22 + γ||wj ||22

)

(26)

where γ > 0 is the regularization parameter, com-
monly estimated through cross-validation.

The geometry of the marginal distribution can be
exploited through the Laplacian-based regularization
(Belkin et al., 2006), which has been applied in regres-
sion and SVM. The equivalence relationship presented
in this paper results in Laplacian regularized LDA.
Furthermore, it naturally leads to semi-supervised di-
mensionality reduction by combining both label and
unlabeled data (Belkin et al., 2006).

Sparsity has recently received much attention for ex-
tending Principal Component Analysis (d’Aspremont
et al., 2004; Jolliffe & Uddin, 2003; Zou et al., 2006).
L1-norm penalty has been used in regression (Tibshi-
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rani, 1996), known as LASSO, and SVM (Zhu et al.,
2003) to achieve model sparsity. Sparsity often leads to
easy interpretation and good generalization ability of
the resulting model. Sparse Fisher Discriminant Anal-
ysis has been proposed in (Mika, 2002), for binary-
class problems. Based on the equivalence relation-
ship between LDA and regression established in this
paper, multi-class sparse LDA can be formulated by
minimizing an objective function similar to the one in
Eq. (26) by replacing the 2-norm of wj by the 1-norm
as ||wj ||1. The optimal wj can be computed by apply-
ing LASSO (Tibshirani, 1996). A solution path can
also be obtained through the LARS algorithm (Efron
et al., 2004). We plan to study the effectiveness of all
these extensions in the future.
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Appendix

A. Proof of Lemma 4.1

Proof. Note that X̃X̃T = nSt. From Eq. (23), we have

WT SbW =

(

(

X̃X̃T
)+

X̃Ỹ

)T

Sb

(

X̃X̃T
)+

X̃Ỹ

= (X̃Ỹ )T (nSt)
+

Sb (nSt)
+

(X̃Ỹ )

=
1

n2
(X̃Ỹ )T U1Σ

−1
t PΣbP

T Σ−1
t UT

1 (X̃Ỹ )

=
1

n2
FT ΣbF.

Since M+MM+ = M+, for any matrix M (Golub &
Van Loan, 1996), and P is orthogonal, i.e., PPT = It,
we have

WT StW =

(

(

X̃X̃T
)+

X̃Ỹ

)T

St

(

X̃X̃T
)+

X̃Ỹ

= (X̃Ỹ )T (nSt)
+

St (nSt)
+

(X̃Ỹ )

=
1

n2
(X̃Ỹ )T (St)

+
(X̃Ỹ )

=
1

n2
(X̃Ỹ )T U1Σ

−2
t UT

1 (X̃Ỹ ) =
1

n2
FT F.

B. Proof of Theorem 4.1

Proof. From Lemma 4.1, we have

tr
(

(WT SbW )(WT StW )+
)

= tr
(

(FT ΣbF )(FT F )+
)

= tr
(

(FT ΣbF )F+(FT )+
)

= tr
(

(FF+)T Σb(FF+)
)

,

where the second equality follows since (FT F )+ =
F+(FT )+ (Golub & Van Loan, 1996). Let

F = P1diag (Σ1, 0) QT
1

be the SVD of F , where P1 and Q1 are orthogo-
nal, Σ1 ∈ IRr×r is diagonal and nonsingular, and
r = rank(F ). It follows that

FF+ = P1diag (Σ1, 0) QT
1 Q1diag

(

Σ−1
1 , 0

)

PT
1

= P1diag (Ir, 0) PT
1

= P1rP
T
1r,

where P1r consists of the first r columns of P1 and thus
has orthonormal columns, i.e., PT

1rP1r = Ir. It follows
that

tr
(

(FF+)T Σb(FF+)
)

= tr
(

PT
1rΣbP1r

)

≤ tr(Σb),

where the first equality follows since tr(AB) = tr(BA)
for any two matrices A and B, and PT

1rP1r = Ir,

and the inequality follows since P1r has orthonormal
columns. This completes the proof of the first part of
the theorem.

When Ỹ = Y3, we have X̃Ỹ = nHb. It follows that

F = PT Σ−1
t UT

1 X̃Ỹ = nPT Σ−1
t UT

1 Hb

= nPT B = nΣ̂QT .

where B is defined in Eq. (18) and Σ̂ ∈ IRt×k is defined

in Eq. (19). Since Σb = Σ̂Σ̂T , we have

WT SbW =
1

n2
FT ΣbF = QΣ̂T ΣbΣ̂QT = QΣ2

bkQT

WT StW =
1

n2
FT F = QΣ̂T Σ̂QT = QΣbkQT

where Σbk consists of the first k rows and the first k
columns of Σb. It follows that

tr
(

(WT SbW )(WT StW )+
)

= tr (Σbk) = tr (Σb) ,

where the last equality follows since only the first q
diagonal entries of Σb are nonzero.

C. Proof of Theorem 5.1

Proof. Let matrix H ∈ IRd×d be defined as follows:

H = U

(

Σ−1
t P 0
0 Id−t

)

, (27)

where U and Σt are defined in Eq. (16), and P is de-
fined in Eq. (19). It follows from Eqs. (16)–(21)

HT SbH = diag (Σb, 0) ,

HT StH = diag (It, 0) . (28)

Since Sw = St − Sb, we have

HT SwH = diag (Σw, 0) , (29)

for some diagonal matrix Σw = It − Σb. From
Eqs. (21), (22), (28) and (29), we have

HT SbH = diag(α2
1, · · · , α2

t , 0 · · · , 0)

HT SwH = diag(β2
1 , · · · , β2

t , 0 · · · , 0),

where α2
1 ≥ · · · ≥ α2

q > 0 = α2
q+1 = · · · = α2

t , and

α2
i + β2

i = 1, for all i. Since rank(Sb) + rank(Sw) −
rank(St) = 0, we have

t = rank(HT StH) = rank(HT SbH) + rank(HT SwH).

Since α2
i + β2

i = 1, at least one of αi and βi is
nonzero. Thus the following inequality always holds:
rank(HT SbH) + rank(HT SwH) ≥ t. The equality
holds only when either αi or βi is zero, for all i. That
is, αiβi = 0, for all i. Hence, α2

1 = · · · = α2
q = 1, that

is, Σbq, which consists of the first q rows and the first
q columns of Σb, equals to Iq.


