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Abstract: Three methods for the identification of multivariate outliers (Rouss-
eeuw and Van Zomeren, 1990; Becker and Gather, 1999; Filzmoser et al.,
2005) are compared. They are based on the Mahalanobis distance that will be
made resistant against outliers and model deviations by robust estimation of
location and covariance. The comparison is made by means of a simulation
study. Not only the case of multivariate normally distributed data, but also
heavy tailed and asymmetric distributions will be considered. The simula-
tions are focused on low dimensional (p = 5) and high dimensional (p = 30)
data.
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1 Introduction

The increasing size of data sets makes it more and more difficult to identify common struc-
tures in the data. Especially for high dimensional data it is often impossible to see data
structures by visualizations even with highly sophisticated graphical tools (e.g. Swayne
et al., 1998; Doleisch et al., 2003). Data mining algorithms as an answer to these difficul-
ties try to fit a variety of different models to the data in order to get an idea of relations in
the data, but usually another problem arises: multivariate outliers.

Many papers and studies with real data have demonstrated that data without any out-
liers (“clean data”) are rather an exception. Outliers can–and very often do– influence the
fit of statistical models, and it is not desirable that parameter estimations are biased by the
outliers. This problem can be avoided by either using a robust method for model fitting
or by first cleaning the data from outliers and then applying classical statistical methods
for model fitting.

Removing outliers does not mean to throw away measured information. Outliers usu-
ally include important information about certain phenomena, artifacts, or substructures in
the data. The knowledge about this deviating behavior is important, although it might not
always be easy for the practitioner to find the reasons for the existence of outliers in the
data, or to interpret them.

Multivariate outliers are not necessarily characterized by extremely high or low values
along single coordinates. Rather, their univariate projection on certain directions separates
them from the mass of the data (this projection approach for outlier detection was intro-
duced by Gnanadesikan and Kettenring, 1972). Standard methods for multivariate outlier
detection are based on the robust Mahalanobis distance which is defined as

MDi =
(
(xi − t)T C−1(xi − t)

)1/2
(1)
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for a p-dimensional observationxi andi = 1, . . . , n. t andC are robust estimations of
location and scatter, respectively. For normally distributed data (and if arithmetic mean
and sample covariance matrix were used), the Mahalanobis distance is approximately chi-
square distributed with p degrees of freedom (χ2

p). Potential multivariate outliersxi will
typically have large values MDi, and a comparison with theχ2

p distribution can be made.
Garrett (1989) introduced the chi-square plot, which draws the empirical distribution

function of the robust Mahalanobis distances against the theχ2
p distribution. A break in

the tail of the distributions is an indication for outliers, and values beyond this break are
iteratively deleted until a straight line appears.

Rousseeuw and Van Zomeren (1990) use a cut-off value for distinguishing outliers
from non-outliers. This value is a certain quantile (e.g., the 97.5% quantile) of theχ2

p

distribution. Fort andC the MVE (minimum volume ellipsoid) estimator (Rousseeuw,
1985) was used. However, several years later the MVE was replaced by the MCD (min-
imum covariance determinant) estimator for this purpose which has better statistical prop-
erties and because a fast algorithm exists for its computation (Rousseeuw and Van Driessen,
1999).

Various other concepts for multivariate outlier detection methods exist in the literature
(e.g. Barnett and Lewis, 1994; Rocke and Woodruff, 1996; Becker and Gather, 1999; Peña
and Prieto, 2001) and different other robust estimators for multivariate location and scatter
can be considered (e.g. Maronna, 1976; Davies, 1987; Tyler, 1991; Maronna and Yohai,
1995; Kent and Tyler, 1996).

Recently, Filzmoser et al. (2005) introduced a multivariate outlier detection method
that can be seen as an automation of the method of Garrett (1989). The principle is to
measure the deviation of the data distribution from multivariate normality in the tails. In
Section 2 we will briefly introduce this method. A comparison with other outlier identi-
fication methods is done by means of simulated data in Section 3. Throughout the paper
we restrict ourselves to thep-dimensional normal distributionNp(µ,Σ) with meanµ and
positive definite covariance matrixΣ, as model distribution. However, we also simulate
data from other distributions in order to get an idea about the performance in different
situations. Section 4 provides conclusions.

2 Methods

The method of Filzmoser et al. (2005) follows an idea of Gervini (2003) for increasing the
efficiency of the robust estimation of multivariate location and scatter. LetGn(u) denote
the empirical distribution function of the squared robust Mahalanobis distances MD2

i , and
let G(u) be the distribution function ofχ2

p. For multivariate normally distributed samples,
Gn converges toG. Therefore the tails ofGn andG can be compared to detect outliers.
The tails will be defined by the quantileδ = χ2

p,1−β for a certain smallβ (e.g.,β = 0.025),
and

pn(δ) = sup
u≥δ

(
G(u)−Gn(u)

)+
(2)

is considered, where “+” indicates the positive differences. In this way,pn(δ) measures
the departure of the empirical from the theoretical distribution only in the tails, defined
by the value ofδ. If pn(δ) is larger than a critical valuepcrit(δ, n, p), it can be considered
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as a measure of outliers in the sample. If this is not the case, the outlier measure it set to
zero.

The critical valuepcrit(δ, n, p) depends on the quantileδ, and on the size of the data
set. It is derived by simulations as follows. Since we consider multivariate normal distri-
bution as model distribution, samples with sizen are simulated from thep-variate standard
normal distribution. Then the outlier detection method is applied and for each simulated
samplepn(δ) is computed for a fixed value ofδ. The critical value is then defined as a
certain quantile(1− ε) of all valuespn(δ) for a small value ofε, e.g.ε = 0.05.

Filzmoser et al. (2005) provide formulas for approximating the critical values for dif-
ferentn andp and forδ = χ2

p,0.975.

One goal of this paper is to get an idea about the performance of the multivariate
outlier detection method of Filzmoser et al. (2005). We decided to make a comparison
with methods that are also based on robust Mahalanobis distances. Moreover, since the
basis for the robust Mahalanobis distance is multivariate location and scatter estimation,
we decided to use the MCD estimator (Rousseeuw, 1985) for this purpose.

One reference method for multivariate outlier detection is the method of Rousseeuw
and Van Zomeren (1990) which uses fixed quantilesχ2

p,1−ϕ as cut-off values for outliers.
The other method is that of Becker and Gather (1999) which works somewhat different:
A so-calledα outlier with respect toNp(µ,Σ) is an element of the set

out(α, µ,Σ) := {x ∈ IRp : (x− µ)>Σ−1(x− µ) > χ2
p,1−α} (3)

which is also calledα outlier region. The size of the outlier region is adjusted to the sam-
ple sizen. This is done by including the condition that under the model, with probability
1−α, no observation lies in the outlier region out(αn,µ,Σ), and thusαn = 1−(1−α)1/n.
An αn outlier identifier is defined as a region

OR(x1, . . . , xn; αn) := {x ∈ IRp : (x− t)>C−1(x− t) ≥ c(αn, n, p)} (4)

The critical valuec(αn, n, p) is obtained by simulations due to the above mentioned con-
dition that with probability1− α no observation will be identified as an outlier.

3 Simulation Study

In the previous section we mentioned three methods for comparison. Here we will use the
abbreviations FGR for the method of Filzmoser et al. (2005), RZ for that of Rousseeuw
and Van Zomeren (1990), and BG for the outlier detection method of Becker and Gather
(1999).

It should be noted that the concept of the methods RZ and BG for outlier detection are
similar because both methods are directly identifying outliers according to their distance.
FGR on the other hand tries to identify values that deviate from a majority of observations.
In order to make the comparison useful we will generate outliers that are far away from
the “clean” data. Thus, outliers will be identified in the tail of the distribution by all three
methods, leading to a comparable situation.

In the following we will study the behavior of the methods in a low dimensional (p = 5
andn = 200) and in a high dimensional (p = 30 andn = 1000) situation. Moreover,
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several data configurations will be considered. The critical values needed for the methods
FGR and BG result from simulations with 1000 replications for the correspondingn and
p and for the parameters (δ, ε; α) being used.

3.1 Normal Data with Shift Normal Outliers

In this first experiment we generaten − nout data points from thep-variate standard
normal distributionNp(0, I) andnout samples from the “outlier distribution”Np(η ·1, I)
(shift outliers). The proportion of outliers is varied asnout/n = 0.05, 0.10, . . . , 0.45.

We compute the proportions of identified outliers on the samples generated from the
outlier distribution (percentage of correct identified outliers) and the proportion of identi-
fied outliers from the “clean data” distribution (percentage of wrong identified outliers).
The proportions are averaged over 100 replications of the simulation. The parameter
choices are:

• for the method FGR:β = 0.025 (thereforeδ = χ2
p,0.975) andε = 0.05

• for the method RZ:φ = 0.025 (therefore cut-offχ2
p,0.975)

• for the method BG:α = 0.05

The results are presented in Figure 2, using the legend of Figure 1. For the low di-
mensional data (left picture) the distance of the outliers was chosen by the valueη = 3,
and for the high dimensional data we tookη = 1.5. Compared to other studies (e.g.
Rousseeuw and Van Driessen, 1999; Peña and Prieto, 2001) this outlier distance is very
low, and in fact there is a significant overlap of the data points from both distributions
(more details below). It can be seen that the methods FGR and RZ have similar behavior,
except for small outlier fractions for the low dimensional data where FGR does not work
well. The method BG performs rather poor in this situation for detecting the outliers.
Note that all three methods break down for high outlier percentages. This, however, is
due to the properties of the algorithm for computing the MCD estimator: Rousseeuw and
Van Driessen (1999) used the same setup–except the distance of the outliers was much
higher withη = 10–and forn = 1000 andp = 30 the MCD gave the correct solution for
a maximum of 24% outliers in the data. For the wrongly identified outliers the method
BG gives the smallest percentages, followed by FGR and RZ.

FGR correct FGR wrong

RZ correct RZ wrong

BG correct BG wrong

Figure 1: Legend to Figures 2, 4 and 5.

It should be noted that for a larger outlier distance, e.g. by takingη = 10, the three
methods would yield essentially the same (good) results.
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Figure 2: Multivariate standard normal distribution with normally distributed shift outliers
with η = 3 (left) andη = 1.5 (right), respectively. For the legend see Figure 1.

Remark 1: With respect to the valueη of the shift outliers it is interesting to know the
“overlap” of the non-outlier and the outlier distribution for growing dimension. We have
computed the overlap forη = 1.5 by simulations as follows.105 data points have been
generated according toNp(1.5 · 1, I), and their Mahalanobis distances with respect to
center0 and covarianceI have been computed. Then we counted the number of samples
with distance smaller thanχ2

p,0.975. In this way we can estimate the probability mass
of the outlier distribution intersecting thep-variate standard normal distribution at the
quantile 0.975. The result is shown in the left picture of Figure 3 for dimensionsp =
2, . . . , 30. Since this valueη = 1.5 was used in the previous simulation forp = 30, it is
surprising that the overlap of the outlier distribution is indeed very small. This leads to
the situation that with increasing dimension the classification problem of identifying shift
outliers should in principle become easier, but due to several studies (e.g. Rousseeuw and
Van Driessen, 1999; Rocke and Woodruff, 1999) the computational problems in higher
dimensions become larger.

On the other hand we can fix the overlap and ask for the distance of the outlier distri-
bution. The result is shown in the right picture of Figure 3 for a fixed overlap of 10%. We
used a log scale on both axes, and it turns out that the relation between (log-)dimension
and (log-)distance is almost linear.

3.2 T3 Distributed Data with Shift Normal Outliers

We take the same simulation setup as in the first experiment, only the “clean” data distri-
bution is changed from multivariate standard normal distribution to multivariatet distri-
bution with 3 degrees of freedom (T3) (see e.g. Genz and Bretz, 1999). TheT3 distribution
has heavier tails and we thus expect more overlap with the outlier distribution. Here we
choose the distance of the shift normal outliers due toη = 3 in both casesp = 5 and
p = 30. The results are shown in Figure 4. Compared to Figure 2 it is clearly visible that
the percentage of wrongly identified outliers is much higher in general which is a conse-
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Figure 3: Effect of the dimension on the overlap (left) and of the choice ofη (right) of a
shifted distribution.

quence of the heavier tails of theT3 distribution. Method BG gives the best results with
this respect. The breakdown in the curve of correctly identified outliers occurs already at
a lower percentage of simulated outliers. Method BG gives rather poor results in the low
dimensional situation (left picture) but very good results forp = 30 (right picture). If we
take the same valueη = 1.5 of the shift outliers as in the previous simulation, the results
for the correctly identified outliers are comparable to the right picture of Figure 2.

Remark 2: Note that the critical values for the methods BG and FGR were computed for
the multivariate normal distribution as model distribution. Since we usedT3 distribution
here as “clean data” distribution it would be correct to compute the critical values under
this model. However, an aspect of this simulation was to see the effect of deviations from
the model.

3.3 Skewed Data with Shift Normal Outliers

Deviations from normality often occur in practical applications, and here we will study
the effect of asymmetric data. The simulation setup is similar as before with the difference
that we take the absolute values of the data generated from theT3 distribution. The normal
shift outliers are at a value ofη = 3 (for p = 5, n = 200) and η = 1.5 (for p =
30, n = 1000), respectively. The results (Figure 5) are coherent with the results of the
previous experiments. The percentages of wrongly identified outliers are comparable to
the previous experiment withT3 distribution, but they decrease with increasing outlier
percentage. Again, method BG gives the best results. Methods FGR and RZ have a very
good performance for identifying the outliers whereas BG has difficulties.

3.4 Sensitivity with Respect to the Choice of the Parameters

The parameters for the different outlier detection methods were fixed in the previous ex-
periments. Of course it is of interest if this choice has severe influence to the performance
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Figure 4: T3 distribution with normally distributed shift outliers withη = 3 (left) and
η = 3 (right), respectively. For the legend see Figure 1.
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Figure 5: Asymmetric distribution with normally distributed shift outliers withη = 3
(left) andη = 1.5 (right), respectively. For the legend see Figure 1.

of the methods. Table 1 presents the results for several parameter choices for the first sim-
ulation experiment (p-variate normal data with shift normal outliers) with 10% outliers for
n = 1000 andp = 30 (compare right picture of Figure 1). The left part of the table shows
the percentages of correctly identified outliers, and the right part refers to wrongly iden-
tified non-outliers. The rows correspond to different choices of the parameterβ (defining
the tail byδ = χ2

p,1−β) for the method FGR, and to different values ofϕ (outlier cut-off
χ2

p,1−ϕ) for the method RZ. The columns of the table refer to values of1− ε for FGR and
to the parameter1 − α for method BG (last row). The results for method FGR are very
stable, except for some values of1− ε = 0.975 for the simulated outliers. RZ is sensitive
for the parameter choice to identify outliers in the non-outlying group, and BG is rather
unstable for the correct outlier identification.
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Table 1: Multivariate normally distributed data with 10% shift normal outliers (n = 1000,
p = 30): Percentages of correctly (left) and wrongly (right) identified outliers for different
choices of the parameters. The rows correspond toβ (for FGR) andϕ (for RZ), and the
columns to1− ε (for FGR) and1− α (for BG), respectively.

Outliers Non-outliers
FGR

RZ
FGR

RZ
0.975 0.95 0.9 0.8 0.7 0.6 0.975 0.95 0.9 0.8 0.7 0.6

0.025 100 100 100 100 100 100100 1 2 3 3 3 3 4
0.05 100 100 100 100 100 100100 1 2 3 3 3 3 7
0.1 100 100 100 100 100 100100 1 2 3 3 3 3 13
0.2 97 99 100 100 100 100 100 1 2 3 3 3 3 24
0.3 82 99 100 100 100 100 100 1 2 3 3 3 3 34
0.4 82 99 100 100 100 100 100 1 2 3 3 3 3 41
BG 81 84 88 92 94 95 0 0 0 0 0 0

We should mention that for the low dimensional data (p = 5, n = 200) the results
for FGR for detecting the simulated outliers are much more unstable as for the high di-
mensional data. This can already be expected when looking at the left picture of Figure 1
where the method FGR is unstable for a proportion of up to 10% of outliers.

Note that we also used the correct critical values for FGR and BG in the sense that the
simulation for these values was done for the parameter choices used in the table.

The second simulation experiment with theT3 distribution was repeated for 10% out-
liers and different parameter choices. The result for the low dimensional data is presented
in Table 2. FGR is very stable, RZ has problems for the non-outliers, and BG is sensitive
for the correct identification of the outliers. The results for the high dimensional data (not
shown) are more stable.

Table 2:T3 distributed data with 10% shift normal outliers (n = 200, p = 5): Percent-
ages of correctly (left) and wrongly (right) identified outliers for different choices of the
parameters. The rows correspond toβ (for FGR) andϕ (for RZ), and the columns to1−ε
(for FGR) and1− α (for BG), respectively.

Outliers Non-outliers
FGR

RZ
FGR

RZ
0.975 0.95 0.9 0.8 0.7 0.6 0.975 0.95 0.9 0.8 0.7 0.6

0.025 100 100 100 100 100 100100 18 19 19 19 19 19 20
0.05 100 100 100 100 100 100100 18 19 19 19 19 19 24
0.1 100 100 100 100 100 100100 18 19 19 19 19 19 29
0.2 100 100 100 100 100 100100 18 19 19 19 19 19 35
0.3 100 100 100 100 100 100100 18 19 19 19 19 19 41
0.4 100 100 100 100 100 100100 18 19 19 19 19 19 43
BG 51 57 69 78 84 88 5 5 6 7 8 9



P. Filzmoser 135

Essentially the same conclusions can be drawn from repeating the third simulation
experiment with asymmetric data (n = 200 andp = 5), now with 20% shift outliers
(Table 3). Method BG is quite stable here also for the detection of the simulated outliers.

Table 3: Asymmetric data with 20% shift normal outliers (n = 200, p = 5): Percentages
of correctly (left) and wrongly (right) identified outliers for different choices of the pa-
rameters. The rows correspond toβ (for FGR) andϕ (for RZ), and the columns to1− ε
(for FGR) and1− α (for BG), respectively.

Outliers Non-outliers
FGR

RZ
FGR

RZ
0.975 0.95 0.9 0.8 0.7 0.6 0.975 0.95 0.9 0.8 0.7 0.6

0.025 100 100 100 100 100 100100 6 6 7 7 7 7 8
0.05 100 100 100 100 100 100100 6 6 7 7 7 7 11
0.1 100 100 100 100 100 100100 6 6 7 7 7 7 16
0.2 100 100 100 100 100 100100 6 6 7 7 7 7 23
0.3 100 100 100 100 100 100100 6 6 7 7 7 7 30
0.4 100 100 100 100 100 100100 6 6 7 7 7 7 35
BG 95 96 98 99 99 99 0 0 0 0 0 1

4 Conclusions

The performance of three methods for identifying multivariate outliers was compared. All
considered methods are based on the robust Mahalanobis distance, so they rely on a robust
estimation of location and covariance. In our simulations we used the MCD estimator
where the determinant was minimized over subsets of size(n + p + 1)/2 (maximum
breakdown value, see Rousseeuw and Van Driessen, 1999). The method RZ (Rouss-
eeuw and Van Zomeren, 1990) uses a quantile of theχ2

p distribution as outlier cut-off.
Method BG (Becker and Gather, 1999) is based on a similar idea, but uses a critical
value obtained by simulations for separating outliers. The method FGR (Filzmoser et al.,
2005) compares the difference between the empirical distribution of the squared robust
Mahalanobis distances and the distribution function of the chi-square distribution. Large
differences in the tails indicate outliers, and a critical value obtained by simulations is
used for comparison.

The simulations show that the performance of the three methods is mainly determined
by the performance of the MCD estimator. Especially the experiments with high dimen-
sional data reflect the limitations of the MCD to identify higher percentages of outliers.
As a way out we could use other estimators of multivariate location and scatter (see Sec-
tion 1). In fact, as was shown in Becker and Gather (2001) the MCD estimator leads in
general to the worst results among the methods compared there. In our study the MCD
estimator was chosen because it is available in standard statistical software packages and
thus frequently used.
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In the simulations we observed that the performance of the methods FGR and RZ is
comparable. Approximately the same percentages of simulated outliers and non-outliers
were detected by both methods. Method BG is preferable for its low rate of wrong out-
lier classification. However, the behavior as an outlier identifier was rather poor for low
dimensional data, and much better for data in higher dimension.

An important aspect is the sensitivity of the methods with respect to the choice of
parameters since for real data the percentage of outliers is usually unknown. In our simu-
lations we used a broad range of parameter choices, and it turned out that method FGR is
very stable. Since the behavior of the method is also quite good in different data configu-
rations (heavy tails, skewed data) and dimensions, we believe that it is indeed very useful
for real data analysis.

A final note should be made on the performance of the methods for data with low
sample sizen. There are some well-known datasets in the literature which have been
analyzed several times for multivariate outliers (see e.g. Rousseeuw and Van Driessen,
1999; Pẽna and Prieto, 2001). We applied the three methods with the parameter choices
β = 0.025 andε = 0.1 (FGR),ϕ = 0.025 (RZ), andα = 0.1 (BG). For each sizen and
p the corresponding critical values for FGR and BG have been computed by simulations.
The indexes of the identified outliers are shown in Table 4. For some datasets the methods

Table 4: Resulting outliers by the methods FGR (β = 0.025, ε = 0.1), RZ (ϕ = 0.025),
and BG (α = 0.1), for some small datasets.

Index of identified outliers by method . . .
Dataset n p FGR RZ BG

Heart 12 2 2
Phosphor 18 2 1, 6, 10
Stackloss 21 3 1, 2, 3, 15, 16, 17,

18, 19, 21
1, 2, 3, 15, 16, 17,
18, 19, 21

Salinity 28 3 5, 11, 16, 23, 24 16
Hawkins-Bradu-Kass 75 3 1, 2, 3, 4, 5, 6, 7,

8, 9, 10, 11, 12,
13, 14

1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12,
13, 14

1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12,
13, 14

Coleman 20 5 1, 6, 9, 10, 11, 15,
18

Wood 20 5 4, 6, 7, 8, 11, 16,
19

Bushfire 38 5 7, 8, 9, 10, 11, 12,
29, 30, 31, 32, 33,
34, 35, 36, 37, 38

7, 8, 9, 10, 11, 12,
29, 30, 31, 32, 33,
34, 35, 36, 37, 38

8, 9, 32, 33, 34,
35, 36, 37, 38

FGR and BG could not identify any outlier, although visual inspection gives a different
impression. Obviously, for these methods the critical values are too high, and for FGR the
approximation of theχ2

p distribution by the empirical distribution function of the squared
robust Mahalanobis distances can be poor for smalln.
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The method FGR is implemented in R (http://cran.r-project.org) as a con-
tributed package calledmvoutlier. Special symbols for the value of the robust Maha-
lanobis distance and colors for the coordinate values are suggested to visualize the struc-
ture of the multivariate outliers (for details see Filzmoser et al., 2005).
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