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Bayes Factors: What They Are and What They Are Not 
Michael LAVINE and Mark J. SCHERVISH 

Bayes factors have been offered by Bayesians as alterna- 
tives to P values (or significance probabilities) for testing 
hypotheses and for quantifying the degree to which ob- 
served data support or conflict with a hypothesis. In an 
earlier article, Schervish showed how the interpretation of 
P values as measures of support suffers a certain logical 
flaw. In this article, we show how Bayes factors suffer that 
same flaw. We investigate the source of that problem and 
consider what are the appropriate interpretations of Bayes 
factors. 

KEY WORDS: Measure of support; P values. 

1. INTRODUCTION 

Consider tosses of a coin known to be either fair, two- 
headed, or two-tailed. There are six nontrivial hypotheses 
about 0, the probability of heads: 

H1:0=1 H2: 0 = 1/2 H3: 0 = O 
H4:0#71 H5:0 7#1/2 H6:0O. 

Jeffreys (1960) introduced a class of statistics for testing 
hypotheses that are now commonly called Bayes factors. 
The Bayes factor for comparing a hypothesis H to its com- 
plement, the alternative A, is the ratio of the posterior odds 
in favor of H to the prior odds in favor of H. 

To make this more precise, let Q be the parameter space 
and let QH c Q be a proper subset. Let ,u be a probability 
measure over Q and, for each 0 c Q, let fx IE ( I0) be the 
density function (or probability mass function) for some ob- 
servable X given e = 0. The predictive density of X given 
H: e) C QH is fH(x) equal to the average of fxie(xj0) 
with respect to ,t restricted to QH. Similarly, the predictive 
density of X given A: e , QH is fA(x) equal to the av- 
erage of fx Ie(x 0) with respect to At restricted to QA (the 
complement of QH). That is, 

fH (X) fQH fxE (x 
I 
0)d-t(0) 

1-t(QH) 

and 

fA (X) fQlA fx IE (xI0) d-t (0) 
Pi(QA) 

If p is the prior probability that H is true-that is, p 
,-(QH)-then the posterior odds in favor of H is the ra- 
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tio pfH(x)/[(l - p)fA(x)]. The Bayes factor is the ratio 
fH (X) /fA (X) . 

Example 1. Consider four tosses of the coin mentioned 
earlier, and suppose they all land heads. Let p, be the prior 
over the parameter space Q = {O, 1/2, 1}, where a point 
in Q gives the probability of heads. If the hypothesis of 
interest is H2: ( = 1/2, then 

fH2 (x) = 
I 

and fH5( (X)A=(l}) 

The Bayes factor in favor of H2 is 

fH2 (X) _ t( {O, I}) 

fH5(X) 16At({1}) 
Suppose that a Bayesian observes data X = x and tests 

a hypothesis H using a loss function that says the cost of 
type II error is some constant b over the alternative and the 
cost of type I error is constant over the hypothesis and is 
c x b. The posterior expected cost of rejecting H is then 
cbPr(H is truelX = x), while the posterior expected cost 
of accepting H is b(1 - Pr(H is truelX = x)). The formal 
Bayes rule is to reject H if the cost of rejecting is smaller 
than the cost of accepting. This simplifies to rejecting H 
if its posterior probability is less than 1/[1 + c], which is 
equivalent to rejecting H if the posterior odds in its favor 
are less than l/c. This, in turn, is equivalent to rejecting H 
if the Bayes factor in favor of H is less than some constant 
k implicitly determined by c and the prior odds. 

It would seem then that a Bayesian could decline to spec- 
ify prior odds, interpret the Bayes factor as "the weight of 
evidence from the data in favour of the ... model" (O'Hagan 
1994, p. 191); "a summary of the evidence provided by the 
data in favor of one scientific theory ... as opposed to an- 
other" (Kass and Raftery 1995, p. 777); or the "'odds for Ho 
to H1 that are given by the data' " (Berger 1985, p. 146) and 
test a hypothesis "objectively" by rejecting H if the Bayes 
factor is less than some constant k. In fact, Schervish (1995, 
p. 221) said "The advantage of calculating a Bayes factor 
over the posterior odds ... is that one need not state a prior 
odds..." and then (p. 283) that Bayes factors are "ways 
to quantify the degree of support for a hypothesis in a data 
set." Of course, as these authors clarified, such an interpreta- 
tion is not strictly justified. While the Bayes factor does not 
depend on the prior odds, it does depend on "how the prior 
mass is spread out over the two hypotheses" (Berger 1985, 
p. 146). Nonetheless, it sometimes happens that the Bayes 
factor "will be relatively insensitive to reasonable choices" 
(Berger 1985, p. 146), and then a common opinion would 
be that "such an interpretation is reasonable" (Berger 1985, 
p. 147). 

We show, by example, that such informal use of Bayes 
factors suffers a certain logical flaw that is not suffered by 
using the posterior odds to measure support. The removal 
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of the prior odds from the posterior odds to produce the 
Bayes factor has consequences that affect the interpretation 
of the resulting ratio. 

2. BAYES FACTORS ARE NOT MONOTONE IN 
THE HYPOTHESIS 

Example 2. Consider once again the four coin tosses 
that all came up heads, let the parameter space be Q = 
{0, 1/2, 1} (as in Example 1) and define a prior distribution 
pt by 

H({l}) =.01, Af({1/2}) =.98, and A({0}) =.01. 

The six predictive probabilities are 

fH,(X) = 1, fH2x) = 0625, fH3(X) = 0, 
fH4 (X) .0619, fHX) (x) .072, 

and the six nontrivial Bayes factors are 

fHl (X)/fH4 (X) 16.16, fH2(X)/fH5(X) .125, 
fH3 (X)/fH6 (X) = 0, 

and their inverses. Suppose that we use the Bayes factors 
to test the corresponding hypotheses. That is, we reject 
a hypothesis if the Bayes factor in its favor is less than 
some fixed number k. If we choose k c (.0619,.125), then 
we reject H4 because 1/16.16 < k but accept H2 because 
.125 > k. That is, we face the apparent contradiction of 
accepting 0 = .5 but rejecting 0 c {0,.5}. This problem 
does not arise if we choose to test the hypotheses by reject- 
ing when the posterior odds is less than some number k'. 
The posterior odds in favor of H2 is never more than the 
posterior odds in favor of H4. 

In Example 2, we were testing two hypotheses, H2 and 
H4, such that H2 implies H4. Gabriel (1969) introduced a 
criterion for simultaneous tests of nested hypotheses. The 
tests of H2 and H4 are coherent if rejecting H4 entails re- 
jecting H2. One typical use of a measure of support for 
hypotheses is to reject those hypotheses (that we want to 
test) that have small measures of support. We can translate 
the coherence condition into a requirement for any measure 
of support for hypotheses. Since any support for H2 must 
a fortiori be support for H4, the support for H2 must be 
no greater than the support for H4. Using the Bayes factor 
as a measure of support violates the coherence condition. 
Schervish (1996) showed that using P values as measures 
of support also violates the coherence condition. Examples 
of coherent measures are the posterior probability, the pos- 
terior odds, and various forms of the likelihood ratio test 
statistic 

LR(H) SUPOEQH fxJe (X10) and 
supo'E fxie(xl0) 

LR'(H) - SUPOEQH fXlE(X10) 
SUPOeQA fx|e(x 0)(1 

The nonmonotonicity (incoherence) of Bayes factors 
is actually very general. Suppose that there are three 

nonempty, disjoint, and exhaustive hypotheses H1, H2, and 
H3 as in Examples 1 and 2. Let H4 be the complement 
of H1 (the union of H2 and H3) as in the examples, so 
that H2 implies H4. Straightforward algebra shows that if 
fH3(X) < min{fH2(x),fH(x)}, then the Bayes factor in 
favor of H4 will be smaller than the Bayes factor in favor 
of H2 regardless of the prior probabilities of the three hy- 
potheses H1, H2, and H3. For instance, the nonmonotonic- 
ity will occur in Example 2 no matter what one chooses for 
the (strictly positive) prior distribution A,. What happens is 
that the Bayes factor penalizes H4 for containing additional 
parameter values (those in H3) that make the observed data 
less likely than all of the other hypotheses under considera- 
tion. An applied example of this phenomenon was encoun- 
tered by Olson (1997), who was comparing three modes of 
inheritance in the species Astilbe biternata. All three modes 
are represented by simple hypotheses concerning the distri- 
bution of the observable data. One hypothesis, H1, is called 
tetrasomic inheritance, while the other two hypotheses, H2 
and H3 (those which happen to have the largest and small- 
est likelihoods, respectively), together form a meaningful 
category, disomic inheritance. The Bayes factor in favor of 
H2 will be larger than the Bayes factor in favor of H2 U H3 
no matter what strictly positive prior one places over the 
three hypotheses because H3 has the smallest likelihood. 

3. BAYES FACTORS ARE MEASURES OF 
CHANGE IN SUPPORT 

The fact that Bayes factors are not coherent as measures 
of support does not mean that they are not useful sum- 
maries. It only means that one must be careful how one 
interprets them. What the Bayes factor actually measures 
is the change in the odds in favor of the hypothesis when 
going from the prior to the posterior. In fact, Bernardo and 
Smith (1994, p. 390) said "Intuitively, the Bayes factor pro- 
vides a measure of whether the data x have increased or 
decreased the odds on Hi relative to Hj." In terms of log- 
odds, the posterior log-odds equals the prior log-odds plus 
the logarithm of the Bayes factor. So, for example, if one 
were to use log-odds to measure support (a coherent mea- 
sure), then the logarithm of the Bayes factor would measure 
how much the data change the support for the hypothesis. 

Testing hypotheses by comparing Bayes factors to pre- 
specified standard levels (like 3 or 1/3 to stand for 3-to- 
1 for or 1-to-3 against) is similar to confusing Pr(AIB) 
with Pr(BIA). In Example 2, even though the Bayes fac- 
tor fH4(X)/fHl(X) = .0619 is small, the posterior odds 
Pr[H4 x]/Pr[Hllx] = .99/.01 x .0619 6.13 is large and 
implies Pr[H41x] .86. The small Bayes factor says that 
the data will lower the probability of H4 a large amount 
relative to where it starts (.99), but it does not imply that 
H4 is unlikely. 

4. WHY COHERENCE? 

Is coherence a compelling criterion to require of a mea- 
sure of support? Aside from the heuristic justification given 
earlier, there is a decision theoretic justification. As be- 
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Table 1. Partitions of the Set of Possible x Values by Two 
Pairs of Tests 

02 _ _ _2 

O 0 0 1 

O F C 0 F 0 
1 E D 1 C UE D 

fore, we assume that a typical application of a measure 
of support will be to reject hypotheses that have low sup- 
port. Hence, we will justify coherence as a criterion for 
simultaneous tests. Consider the most general loss function 
L that is conducive to hypothesis testing. That is, let the 
action space have two points, 0 and 1, where 0 means ac- 
cept H and 1 means reject H, and let H e C QH be 
the hypothesis. We assume that L(O, O) > L(O, 1) for all 
0 ' QH and L(O,O) < L(O, 1) for all 0 C QH. This says 
that error is more costly than correct decision, but other- 
wise places no restrictions on the loss. Now, suppose that 
we have two hypotheses, H1 e C Q1 and H2 e C Q2, 
with corresponding loss functions L1 and L2 of the above 
form. For the simultaneous testing problem, we use loss 
L(O, (a,, a2)) = Li (O, a,) + L2(0, a2), where ai is the ac- 
tion for testing Hi for i = 1, 2. We impose one other 
condition-namely that for those parameters that are in 
both hypotheses or in both alternatives, the costs of er- 
ror be the same in both testing problems. In symbols, this 
means that for all 0 c (Q1 n Q2) U (QC n Qc), we have 
L1 (O, O) -L1 (O, 1) = L2(O, O) -L2 (O, 1). Under these condi- 
tions, we can prove two simple results. For non-Bayesians, 
incoherent tests are inadmissible. For Bayesians, incoherent 
tests are not formal Bayes rules. 

Suppose that Q1 C Q2 and let Oi be a test of Hi. That is, 
qi(x) = 1 means reject Hi and qi(x) = 0 means accept Hi. 
The sample space is divided into four parts C, D, E, and F 
according to whether (01(x),02(X)) is (0,1), (1,1), (1,0), or 
(0,0), respectively. See the left side of Table 1. In particular, 
C = {X : (l(X), 02 (X))= (0, 1)} is the set where we make 
the incoherent decision to reject H2 while accepting H1. 
Create another pair (X1, X2) of tests such that, for i = 1, 2, 
i (x) = Xiq(x) for all x , C and 4i (x) = 03_i(x) for all 

x c C. That is, X = (X1,X2) switches the two decisions 
when incoherence occurs in X = (01,02). Then the right 
side of Table 1 gives the sets where b1 and 2 take various 
pairs of values. Suppose that there exists 0 C Q2 \ Q with 
Po(C) > 0. We can now show that 0 dominates f and that 
it has smaller posterior risk. The risk functions of the two 
pairs of tests are 

R(0,0) = L1(0,0)Po(C U F) + L2(O,O)Po(E U F) 
-HL1(O, 1)Po(D U F) 
+L2(O, 1)Po(C U D), 

R(O, 4) =L1( 0: )Po(F) + L2 (O, 0)Po(C U F U F) 
?L1(O, 1)Po(C U D UE) 
+l 2 (, 1)Po (D). 

If we subtract these two we get R(0, 0) - R(0,) - 

Po(C)g(0), where 

g(O) Li(0, 0) - L2 (O, 0)- L1(0, 1) + L2(O, 1). 

Our assumptions imply that g(O) > 0 for all 0 C Q2 \Q1 and 
it is 0 for all other 0. Since Po (C) > 0 for some 0 C Q2 \ Q1, 
0 is inadmissible. From the Bayesian perspective, if x c C, 
the posterior risk of 0 is f[L1 (0, 0) + L2(0, l)]dAte1x(OJx), 
where At,e1x is the posterior distribution. The posterior risk 
of 4 is f[Li(0, 1) +L2(O, O)]dAteIx(O x). The difference be- 
tween these two posterior risks is easily seen to equal the 
integral of g(O) with respect to the posterior distribution. If 
x , C, then the two rules make the same decision; hence, 
they have the same posterior risk. So long as the posterior 
risks are finite and Q2\Ql has positive posterior probability, 
b cannot be a formal Bayes rule. 

5. DISCUSSION 

Coherence is a property of tests of two or more nested 
hypotheses considered jointly, but we can gain some in- 
sight into it by considering a single test on its own. When 
comparing two hypotheses it is useful to rephrase the ques- 
tion as How well, relative to each other, do the hypotheses 
explain the data? In the case of comparing two simple hy- 
potheses, there is wide agreement on how this should be 
done. As Berger (1985, p. 146) pointed out, the Bayes fac- 
tor is the same as the likelihood ratio LR' from (1) in this 
case. Also, in the case of two simple hypotheses, the P 
value is just the probability in the tail of one of the distri- 
butions beyond the observed likelihood ratio, hence it is a 
monotone function of the Bayes factor. So, the Bayes fac- 
tor and the P value really can measure the support that the 
data offers for one simple hypothesis relative to another, and 
in a way that is acceptable to Bayesians and non-Bayesians 
alike. One should also note that coherence is not an issue in 
the case of two simple hypotheses because there do not ex- 
ist two nonempty distinct nested hypotheses with nonempty 
complements. On the other hand, as we noted at the end of 
Section 3, just because the data increase the support for a 
hypothesis H relative to its complement does not necessar- 
ily make H more likely than its complement, it only makes 
H more likely than it was a priori. 

When at least one of the hypotheses is composite, inter- 
pretations are not so simple. One might choose either to 
maximize, to sum, or to average over composite hypothe- 
ses. Users of the likelihood ratio statistic maximize: they 
find the value of 0 within each hypothesis that best explains 
the data. Users of posterior probabilities sum: the posterior 
probability of a hypothesis is the sum (or integral) of the 
posterior probabilities of all the 0's within it. Users of Bayes 
factors average: the Bayes factor is the ratio of fx,E (x I0) 
averaged with respect to the conditional prior given each 
hypothesis. But averaging has at least two potential draw- 
backs. First, it requires a prior to average with respect to, 
and second, it penalizes a hypothesis for containing values 
with small likelihood. As we noted at the end of Section 
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2, interpreting the Bayes factor as a measure of support is 
incoherent because of the second drawback. 

[Received January' 1997. Revised September 1997.] 
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