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Summary 

Maximnm likelihood estimates are reported to be best under all circumstances. Yet there are 
numerous simple examples where they plainly misbehave. One gives some eranmples for problems 
that had not been invented for the purpose of annoying ms,aximunm likelihood fans. Another 
example, imitated from B'hadu'r, has been specially created with just such a purpose in mind. Next, 
we present a list of principles leading to the construction of good estimates. The main principle says 
that one should not believe in principles but study each problem for its own sake. 
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1 Introduction 

One of the most widely used methods of statistical estimation is that of maximum 
likelihood. Opinions on who was the first to propose the method differ. However Fisher is 
usually credited with the invention of the name 'maximum likelihood', with a major effort 
intended to spread its use and with the derivation of the optimality properties of the 
resulting estimates. 

Qualms about the general validity of the optimality properties have been expressed 
occasionally. However as late as 1970 L.J. Savage could imply in his 'Fisher lecture' that 
the difficulties arising in some examples would have rightly been considered 'mathemati- 
cal caviling' by R.A. Fisher. 

Of course nobody has been able to prove that maximum likelihood estimates are 'best' 
under all circumstances. The lack of any such proof is not sufficient by itself to invalidate 
Fisher's claims. It might simply mean that we have not yet translated into mathematics 
the basic principles which underlied Fisher's intuition. 

The present author has, unwittingly, contributed to the confusion by writing two papers 
which have been interpreted by some as attempts to substantiate Fisher's claims. 

To clarify the situation we present a few known facts which should be kept in mind as 
one proceeds along through the various proofs of consistency, asymptotic normality or 
asymptotic optimality of maximum likelihood estimates. 

The examples given here deal mostly with the case of independent identically 
distributed observations. They are intended to show that maximum likelihood does 
possess disquieting features which rule out the possibility of existence of undiscovered 
underlying principles which could be used to justify it. One of the very gross forms of 
misbehavior can be stated as follows. 

Maximum likelihood estimates computed with all the information available may turn 
out to be inconsistent. Throwing away a substantial part of the information may render 
them consistent. 

The examples show that, in spite of all its presumed virtues, the maximum likelihood 
procedure cannot be universally recommended. This does not mean that we advocate 
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some other principle instead, although we give a few guidelines in ? 6. For other views see 
the discussion of the paper by Berkson (1980). 

This paper is adapted from lectures given at the University of Maryland, College Park, 
in the Fall of 1975. We are greatly indebted to Professor Grace L. Yang for the invitation 
to give the lectures and for the permission to reproduce them. 

2 A Few Old Examples 

Let X1, X2, ... , X, be independent identically distributed observations with values in 
some space {X,A}. Suppose that there is a a-finite measure A on A and that the 
distribution P0 of Xj has a density f(x, 0) with respect to M. The parameter 0 takes its 
values in some set 0. 

For n observations x,l, x,.. ., xn the maximum likelihood estimate is any value 0 such 
that 

n n 

f (x0) sup f(x,e 0). 
j=1 0eO j= 

Note that such a 0 need not exist, and that, when it does, it usually depends on what 
version of the densities f(x, 0) was selected. A function (xl,..., x,n) 0((x,.. ., x,) 
selecting a value 0 for each n-tuple (xl,..., x,) may or may not be measurable. 
However all of this is not too depressing. Let us consider some examples. 

Example 1. (This may be due to Kiefer and Wolfowitz or to whoever first looked at 
mixtures of Normal distributions.) Let ca be the number c = 10-1017. Let 0= (,u, a), 
M e (-00, +oo), a>0. Let fl(x, 0) be the density defined with respect to Lebesgue 
measure A on the line by 

- 2p{( -^ 1 (X{-7)2} fi(x, 0) = (2r) exp -2 (x - P)2 + a(2r) exp {- (a2 

Then, for (xl, ..., xn) one can take p = xl and note that 
n 

sup fi(x,;p, o)= o. 
a j=l 

If a = 0 was allowed one could claim that 0 = (xl, 0) is maximum likelihood. 

Example 2. The above Example 1 is obviously contaminated and not fit to drink. Now 
a variable X is called log normal if there are numbers (a, b, c) such that 

X = c + eaY+b 

with a Y which is N(0, 1). Let 0 = (a, b, c) in R3. The density of X can be taken zero for 
x < c and for x > c, and is equal to 

2(X, ) = (2) exp 2 [log (x - c) - b]2} - (-x ). 

A sample (x1, .. ., Xn) from this density will almost surely have no ties and a unique 
minimum 

z = min xj. 

The only values to consider are those for which c < z. Fix a value of b, say b = 0. Take a 
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c e (z - 1, z) so close to z that 

Ilog (z - c)l = max Ilog (xj - c)l. 
i 

Then the sum of squares in the exponent of the joint density does not exceed 

1n 1log (z - c)12. 

One can make sure that this does not get too large by taking a = n |log (z - c)l. The 
extra factor in the density has then a term of the type 

[n? log (z - c)l]-n - c 

which can still be made as large as you please. 
If you do not believe my algebra, look at the paper by Hill (1963). 

Example 3. The preceding example shows that the log normal distribution misbehaves. 
Everybody knows that taking logarithms is unfair. The following shows that three 
dimensional parameters are often unfair as well. (The example can be refined to apply to 
0eR2.) 

Let X = R3 = O. Let lIxll be the usual Euclidean length of x. Take a density 
-fllx-0112 

IIx - 011' 

with 3 e (0, 1) fixed, say / = -. Here again 
n 

If3(xj, 0) 
j=1 

will have a supremum equal to +o0. This time it is even attained by taking 0 = xi, or x2. 
One can make the situation a bit worse selecting a dense countable subset {ak}, 

k = 1, 2,..., in R3 and taking 

f4(x, 0)= C(k) exp (-llx - 0- ak112} 
k IIx - 0 - ak II' 

with suitable coefficients C(k) which decrease rapidly to zero. 
Now take again a = 101-137 and take 

f5(x, 0) = (2r)32 e + of3(x, e). 

If we do take into account the contamination af3(x, 0) the supremum is infinite and 
attained at each xi. If we ignore it everything seems fine, but then the maximum 
likelihood estimate is the mean 

n 

nj=1 

which, says C. Stein, is not admissible. 

Example 4. The following example shows that, as in Examples 2 and 3, one should not 
shift things. Take independent identically distributed observations X, .. ., Xn from the 
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gamma density shifted to start at ~ so that it is 

f(x, o) = fiT-l(c)e-(x-)(x - 5) -1 

for x ? $ and zero otherwise. Let fS and ar take positive values and let t be arbitrary real. 
Here, for arbitrary 0 < a < 1, and arbitrary f > 0, one will have 

n 

sup f(xi, 0)=. 
/ j=1 

One can achieve +0o by taking J = min Xi, c E (0, 1) and A arbitrary. The shape of your 
observed histogram may be trying to tell you that it comes from an a ? 10, but that must 
be ignored. 

Example 5. The previous examples have infinite contaminated inadmissible difficulties. 
Let us be more practical. Suppose that X1, X2, . .., Xn are independent uniformly 
distributed on [0, 0], 0 >0 Let Z = maxXj. Then n = Z is the m.l.e. It is obviously 
pretty good. For instance 

Eo(O - 0)2= 02 2 
(n + 1)(n + 2)' 

Except for mathematical caviling, as L.S. Savage says, it is also obviously best for all 

purposes. So, let us not cavil, but try 

n+2 
n ~- Z. 

n* + 1 n+l 

Then 

E,(08* - 0)2 = 02 
(n + 1)2' 

The ratio of the two is 

Ee(O- 0)2 n_+1 =2 
E(On*- 0)2 n+2 

This must be less than unity. Therefore one must have 2(n + 1) S n + 2 or equivalently 
0. 

It is hard to design experiments where the number of observations is strictly negative. 
Thus our best bet is to design them with n = 0 and uphold the faith. 

3 A More Disturbing Example 

This one is due to Neyman and Scott. Suppose that (Xj, Yj), j = 1, 2,..., are all 
independent random variables with Xj and Yj both Normal N(ij, a2). We wish to estimate 
a2. A natural way to proceed would be to eliminate the nuisances , and use the 
differences Zi = Xj - Yj which are now N(0, 22). One could then estimate a2 by 

1 n 
s2=_ zj2 

2n i- =l 

That looks possible, but we may have forgotten about some of the information which is 
contained in the pairs (Xj, Yj) but not in their differences Zj. Certainly a direct application 
of maximum likelihood principles would be better and much less likely to lose 
information. So we compute e2 by taking suprema over all 5j and over a. 
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This gives 

2n = 2S 

Now, we did not take logarithms, nothing was contaminated, there was no infinity 
involved. In fact nothing seems amiss. 

So the best estimate must be not the intuitive s2 but a2 = 1S2 

The usual explanation for this discrepancy is that Neyman and Scott had too many 
parameters. This may be, but how many is too many? When there are too many should 
one correct the m.l.e. by a factor of two or (n + 2)/(n + 1) as in Example 5, or by taking a 
square root as in the m.l.e. for a star-like distribution? For this latter case, see Barlow 
et al. (1972). 

The number of parameters, by itself, does not seem to be that relevant. Take, for 
instance, i.i.d. observations X1X2, Xn on the line with a totally unknown distribu- 
tion function F. The m.l.e. of F is the empirical cumulative Fn. It is not that bad. Yet, a 
crude evaluation shows that F depends on very many parameters indeed, perhaps even 
more than Barlow et al. had for their star-like distributions. 

Note that in the above examples we did not let n tend to infinity. It would not have 
helped, but now let us consider some examples where the misbehavior will be described 
as n -> o. 

4 An Example of Bahadulr 

The following is a slight modification of an example given by Bahadur in 1958. The 
modification does not have the purity of the original but it is more transparent and the 
purity can be recovered. 

Take a function, say h, defined on (0, 1]. Assume that h is decreasing, that h(x) > 1 for 
all x E (0, 1] and that 

f h(x)dx= . 

Select a number c, c E (0, 1) and proceed as follows. One probability measure, say po, on 
[0, 1] is the Lebesgue measure A itself. Define a number al by the property 

[h(x) - c]dx = 1 - c. 
ial 

Take for pi the measure whose density with respect to A is c for 0 x - a1 and h(x) for 
al <x<l. 

If al, a2, .. , ak- have been determined define ak by the relation 

[h(x) - c]dx = 1 - c 
ak 

and take for Pk the measure whose density with respect to A on [0, 1] is c for x ? (ak, ak-1] 
and h(x) for x e (ak, ak-1]. 

Since 
f h(x)dx = oo 

the process can be continued indefinitely, giving a countable family of measures Pk, 
k = 1, 2, .... Note that any two of them, say pj and Pk with j < k, are mutually absolutely 
continuous. 
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If Xl, X2,..., Xn are n observations taken on [0, 1] the corresponding logarithm of 
likelihood ratio is given by the expression: 

log fn dpk(x,) (k) (x) h(xi) 

i=1 dpj(xi) i c c 

where the first sum (k) is for xi E (ak, ak-lI and the second is for xi E (aj, aj-1]. 
Now assume that the X1,..., Xn are actually i.i.d. from some distribution pjo. They 

have a minimum 
Zn = min Xi. 

i 

With probability unity this will fall in some interval (akn, akn-l] with kn = kn(Zn). Fix a 
value j and consider n-lAk". This is at least equal to 

1 h(Zn) 1 h(ai) 
n-log c -nv,log n c n c 

where Vj,n is the number of Xj's which fall in (aj, aj_1]. 
According to the strong law of large numbers n-l'vjn converges to some constant 

Pjo,s S 1. Also, jo being fixed, Zn tends almost surely to zero. In fact if y < ajo one can write 

pji{Zn >y} = (1 - cy)n < e-ncy 

Thus, as long as n e-nc"" < 00 it will be almost certain that eventually Z, <y,. In 
particular Zn may have a limiting distribution but nZ2 almost certainly tends to zero. 

This being the case take c = 9 and h = exp{l/x2}. Then 

-log h(Zn) = (nZ)- 

tends to infinity almost surely. 
Thus if we take any finite set J = (1, 2, ..., j;), for any fixed jo there will almost surely 

be an integer N such that 9N cease to be in J from N on. 
It might be thought that such disgraceful behavior is due to the vagaries of measure 

theory. Indeed the variables Xj used here are continuous variables and everybody knows 
that such things do not really exist. 

However, replace the measures Pk used above by measures qk whose density on 
(ak, ak-1) is constant and equal to 

ak-1 

[ak-l- ak]- j h(x) dx. 
ak 

Then, there is no need to record the exact values of the observations Xj. It is quite 
enough to record in which interval (ak, ak_l] they fall. The parameter 0 is itself integer 
valued. However the same misbehavior of m.l.e. will still occur. (This is essentially 
equivalent to Bahadur's first construction.) 

In the present construction the parameter 0 is integer valued. It is easy to modify the 
example to obtain one in which 0 takes values, say, in (1, oo) and in which the observable 
variables have densities f(x, 0) which are infinitely differentiable functions of 0. For this 
purpose define Pk as above. Let u be a function defined on (-oo, +oo) constructed so that 
u(x) = 0 for x < 0, and u(x) = 1 for x > 1. One can find functions u of that kind which are 
strictly increasing on (0, 1) and are infinitely differentiable on (-oo, +oo). 

Now let pe =Pk if 0 is equal to the integer k. If 0 e (k, k + 1) let 

pe = [1 - u(0 - k)pk + u(0 - 
k)pk+. 
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Taking for each Pk the densities fk used previously, we obtain similarly densities 

f(x, 0) = [1 - u( - k)lfk(x) + u(O - k)fk+l(X). 

The function u can be constructed, for instance, by taking a multiple of the indefinite 
integral of the function 

{-[ 1 

for t E [0, 1) and zero otherwise. If so f(x, 0) is certainly infinitely differentiable in 0. 
Also the integral ff(x, 0) dx can be differentiated infinitely under the integral sign. There 
is a slight annoyance that at all integer values of 0 all the derivatives vanish. To cure this 
take a = 1010137 and let 

g(x, 0) = l[f(x, 0) +f(x, 0 + ce-4)]. 

Then, certainly, everything is under control and the famous conditions in Cramer's text 
are all duly satisfied. Furthermore, 0 6O' implies 

Ig(x, 0)-g(x, 0') dx >0. 

In spite of all this, whatever may be the true value O0, the maximum likelihood 
estimate still tends almost surely to infinity. 

Let us return to the initial example with measures Pk, k = 1, 2,..., and let us waste 
some information. Having observed X1,... , Xn, according to one of the Pk take 
independent identically distributed N(0, 106) variables Yl,..., Yn and consider Vj= 
Xj + Yj for j= 1, 2, ..., n. 

Certainly one who observes Vj, j = 1,..., n, instead of Xj, i = 1,... , n, must be at a 
gross disadvantage! 

Maximum likelihood estimates do not really think so. 
The densities of the new variables Vj are functions, say IPk, defined, positive analytic, 

etc. on the whole line R = (-oo, +oo). They still are all different. In other words 

I Ik(x)- j(x)l dx >0 (k j). 

Compute the maximum likelihood estimate On = n(v1,..., Vn) for these new observa- 
tions. We claim that 

pj[O (V1 ..., Vn) =j]- 1 

as n - oo. 
To prove this let a = 103 and note that ipj(v) is a moderately small distortion of the 

function 

i(v) = c a e(2v) 2f(2a2) d_ + (1 - C) ( (ve-i)2/(2a2) 
or +V(2r) oV/(2sr) 

Furthermore, as m -- oo the function Pm(v) converges pointwise to 
.1 

1 1 
-(v) = c e a((2-) e 2( d +1 - (2) ev2/(222) 

orN(2.1r)'a~ + ( c)o/(2r) 

Thus, we can compactify the set = {1, 2, .. .} by addition of a point at infinity with 
t~oo(v) as described above. 
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We now have a family {tie; 0 e 0} such that ipe(v) is continuous in 0 for each v. Also 

sup log lkv + 
kam L ti(V) 

does not exceed 
106 

I(v - 1)2 - v21. 

Since this is certainly integrable, the theorem due to Wald (1949) is applicable and 0 is 
consistent. 

So throwing away quite a bit of information made the m.l.e. consistent. Here we 
wasted information by fudging the observations. Another way would be to enlarge the 
parameter space and introduce irrelevant other measures Po. 

For this purpose consider our original variables Xj, but record only in which interval 
(ak, ak_-] the variable Xj falls. We obtain then discrete variables, say Yj such that 
Pi[Yj = k] is the integral qi(k) of pi(x) on (ak, ak_-]. Now, the set 0 of all possible discrete 
measures on the integers k = 1, 2, ... can be metrized, for instance by the metric 

IIQs - Qrl1 = > Iqs(k)- qr(k)l. 
k 

For this metric the space is a complete separable space. 
Given discrete observations Yj, j = 1,..., n, we can compute a maximum likelihood 

estimate, say O*, in this whole space 0. The value of O* is that element O* of 0 which 
assigns to the integer k a probability O*(k) equal to the frequency of k in the sample. 
Now, if 0 is any element whatsoever of 0, for every e >0, Pe{llO - 0* > e} tends to 
zero as n -- oo. More precisely, 0* - 0 almost surely. 

The family we are interested in, the qi, i = 1, 2,..., constructed above form a certain 
subset, say 00, of 0. It is a nice closed (even discrete) subset of 0. 

Suppose that we do know that 0 Eo. Then, certainly, one should waste that 
information. However if we insist on taking a On e 00 that maximizes the likelihood there, 
then On will almost never tend to 0. If on the contrary we maximize the likelihood over 
the entire space of all probability measures on the integers, we get an estimate 6* that is 
consistent. 

It is true that this is not the answer to the problem of estimating a 0 that lies in 00. May 
be that is too hard a problem? Let us try to select a point On E 0o closest to 0*. If there is 
no such closest point just take On such that 

|I0n - 0nil 2-n + inf {|0n - 011; 0 E o}. 
Then 

Pe {n = 0 for all sufficiently large n} = 1. 

So the problem cannot be too terribly hard. In addition Doob (1948) says that, if we place 
on 00 a prior measure that charges every point, the corresponding Bayes estimate will 
behave in the same manner as our On. 

As explained this example is imitated from one given by Bahadur (1958). Another 
example imitated from Bahadur and from the mixture of Example 1 has been given by 
Ferguson (1982). Ferguson takes 0 = [0, 1] and considers i.i.d. variables taking values in 
[-1, +1]. The densities, with respect to Lebesgue measure on [-1, -1], are of the form 

f (X, ) 2 + -0) -x-9(o) \]' f(x^e)62b() 6(o) 
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where 6 is a continuous function that decreases from 1 to 0 on [0, 1]. If it tends to zero 
rapidly enough as 0- 1, the peaks of the triangles will distract the m.l.e. from its 

appointed rounds. In Example 1, ? 2, the m.l.e. led a precarious existence. Here 
everything is compact and continuous and all of Wald's conditions, except one, are 
satisfied. To convert the example into one that satisfies Cramer's conditions, for 
0 E (0, 1), Ferguson replaces the triangles by Beta densities. 

The above example relies heavily on the fact that ratios of the type f(x, 0)/f(x, 00) are 
unbounded functions of 0. One can also make up examples where the ratios stay bounded 
and m.l.e. still misbehaves. 

A possible example is as follows. For each integer m > 1 divide the interval (0, 1] by 
binary division, getting 2m intervals of the form 

(j2-, (j + 1)2-m] (j = , 1,...,2m 1). 

For each such division there are 

(2m) 
2M-1 

ways of selecting 2m-1 of the intervals. Make a selection s. On the selected ones, let )s,m 
be equal to 1. On the remaining ones let qPs,m be equal to (-1). 

This gives a certain countable family of functions. 
Now for given m and for the selection s let Ps,m be the measure whose density with 

respect to Lebesgue measure on (0, 1] is 

1 + (1 - e-m)s,m. 

In this case the ratio of densities is always between I and 2. The measures are all distinct 
from one another. 

Application of a maximum likelihood technique would lead us to estimate m by +00. 
(This is essentially equivalent to another example of Bahadur.) 

5 An Example from Biostatistics 

The following is intended to show that even for 'straight' exponential families one can 
sometimes do better than the m.l.e. 

The example has a long history, which we shall not recount. It occurs from the 
evaluation of dose responses in biostatistics. 

Suppose that a chemical can be injected to rats at various doses yl, Y2, . . , yi > 0. For a 
particular dose, one just observes whether or not there is a response. There is then for 
each y a certain probability of response. Biostatisticians, being complicated people, prefer 
to work out not with the dose y but with its logarithm x = log y. 

We shall then let p(x) be the probability of response if the animal is given the log dose 
x. 

Some people, including Sir Ronald, felt that the relation x->p(x) would be well 
described by a cumulative normal distribution, in standard form 

p() =/(2r) 
e- dt 

I do not know why. Some other people felt that the probability p has a derivative p' 
about proportional to p except that for p close to unity (large dose) the poor animal is 
saturated so that the curve has a ceiling at 1. 
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Thus, somebody, perhaps Raymond Pearl, following Verhulst, proposed the 'logistic' 
p'(x) =p(x)[l -p(x)] whose solution is 

p(x) =1 + e-x 

give or take a few constants. 
Therefore, we shall assume that p(x) has the form 

1e- p(x) = 1 + e-(*a+x) 

with two constants a and f3, f > 0. 
Since we are not particularly interested in the actual animals, we shall consider only the 

case where f is known, say f3 = 1 so that ac is the only parameter and 

p(x) = 1( 1 + e-('"+X)' 

Now we select a few log doses x1, x2,.. ., x,. At xj we inject nj animals and count the 
number of responses rj. We want to estimate a. 

For reasons which are not biostatistical but historical (or more precisely routine of 
thought) it is decided that the estimate & should be such that 

R(&, a)=E,(&- C)2 

be as small as possible. 
A while back, Cramer and Rao said that, for unbiased estimates, R(&, a) cannot be 

smaller than 1/1(ca), where I(a) is the Fisher information 

I(a) = njp(xj)[l -p(xj)]. 

So, to take into account the fact that some positions of a are better than some others we 
shall use instead of R the ratio 

F = I(a)E,(& - a)2. 

The joint density of the observations is easy to write. It is just 

H (r)[P )] p)] H (r )[ 
p(xj) 

where sj is the number of non respondents at log dose xj. 
Now 

1-p(xi) =_(+Xj) 
p(xj) 

so that the business term of the above is just 

Il e-(t+xj)sj 
j 

in which one recognizes immediately a standard one-dimensional, linearly indexed 
exponential family, with sufficient statistic E sj. 

The first thing to try is of course the best estimate of all, namely m.l.e. That leads to a 
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nice equation 

s = nj[1 -p(xj)], 

which unfortunately is hard to solve. 
So, somebody decided, let us try the next best, namely the minimum X2. This leads to 

minimize 
nj[fi -p(xj)]2 

pj(1 - pj) 

with f = rj/nj. It is even a worse affair. However Joe Berkson had the bright idea of 
taking the log of (1 -p)/p and noticing that it is linear in a which leads to the question, 
why not just apply least squares and minimize 

[log 1 
- 

(c + xj)] ? fi 
Well, as Gauss said, that will not do. One should divide the square terms by their 

variances to get a good estimate. The variance of log [(1 -f)/fJ]? Oops! It is infinite. Too 
bad, let us approximate. After all if 4 is differentiable, then ?(f)- f(p) is about 
(f -p))'(p), so its variance is almost (4'(p))2Var(f -p) give or take a mile and a 
couple of horses tails. If 4(f) is log [(1 -f)/f ], that gives O'(p) = -[p(1 -p)]-1. Finally, 
we would want to minimize 

E np(xj)[l -p(xj)]{log [ 
1 

] - (a +) 

Not pleasant! All right, let us replace the coefficients p(xj)[l-p(xj)] by estimates 
f(1 -fi). 

Now we have to minimize 

E nj,(1 -fj)[log (1 f) - (a + xj)], 

a very easy matter. 
After all these approximations nobody but a true believer would expect that the 

estimate so obtained would be any good, but there are people ornery enough to try it 
anyway. Berkson was one of them. He found to his dismay, that the estimate had, at last 
at one place, a risk ratio F = I(a)E,(& - a)2 strictly less than unity. Furthermore, that 
was a point where the estimate was in fact unbiased! So Joe was ready to yell 'down with 
Cramer-Rao!' when Neyman pointed out that the derivative of the bias was not zero, and 
that Frechet before Cramer and Rao had written an inequality which involves the 
derivative of the bias. 

To make a long story short, they looked at the estimate. Then Joe Berkson and Joe 
Hodges Jr. noticed that one could Rao-Blackwellize it. Also these two authors tried to 
find a minimax estimator. They found one which for most purposes is very close to being 
minimax. 

Their work is reported in 4th Berkeley Symposium, volume IV. Numerical computa- 
tions show that for certain log doses 

X1 = -log, 2O, = 0, X3 = log 

with 10 rats at each dose, the minimum logit estimate is definitely better than m.l.e. 
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Some numbers are given in Table 1; the label P2 means p(x2) = (1 + e- )-1. The entry 
is F(ac). The minimum logit estimate Rao-Blackwellized is B and H is the Berkson- 
Hodges near minimax estimate. 

Table 1 
Risk of estimates 

P2 
0-5 0-7 0-85 

m.I.e. 1-0575 1-1034 1-2740 
min logit 0-9152 0-9589 0.9109 
B 0-8778 0-8935 0-8393 
H 0-8497 0-8502 08465 

Now conventional wisdom has it that, for any reasonable estimate, the ratio called 
F(a) above should have the form 

1 
F*(a)= 1 +-(A + B + C)+ ?, 

n 

where e is negligible (give or take a couple of horses hairs). 
The quantities A, B and C are all positive numbers. 
One of them, say A, is a Bhattacharya curvature term which depends on the 

parametrization but not the estimate. The second, say B, is the Efron curvature term, 
which depends neither on the estimate, nor on the parametrization. 

Finally C depends on many things but it is zero for the m.l.e. From this one concludes 
that m.l.e. is best, or if one wants in the preceding table that 127 < 85. 

Something must be amiss somewhere. One possibility is that there are too many horse 
hairs in e. 

This might be so here. It might be so also in some other cases, such as the 'dilution 
series' studied by T. Ferguson and perhaps also in the case that you may want to study. 

However, there is also another reason. In the derivation of expansions such as the F* 
given above, most authors first correct the estimates to make them almost unbiased or to 
make them have about the same bias as the local m.l.e., depending on circumstances. 

Why would one want to do that? Well, for one thing, the bias would introduce in F* 
terms which are not of order 1/n but of order unity and can be positive or negative. 

They would overwhelm the (C/n). We cannot allow any such thing, of course. This 
would send us back to the beginning and point out that we do not have a standard 
procedure for controlling the first order term. 

So, never mind what the first order terms do, m.l.e. will control the second order terms 
for you, if it happens to be in the neighborhood of the true value. 

This author has heard rumors to the effect that measuring the risk by expected square 
deviations is foolish. Of course it is. In fact in the present case I forgot to say that the 
m.l.e. can take infinite values with positive probability. 

Berkson and Hodges had replaced those infinite values by 3-37 in all the computations. 
To end on a more cheerful note, let us remark that the minimum logit is also pretty 

badly behave at times. 
Bill Taylor points out that if one takes a fixed number m of log doses xl, x2, x , 

and let the number nj at each grow, like say cjN, N = Ej ni, cj constant, then both m.l.e. 
and min logit are consistent. 

However, if one scatters the rats between log doses xj, a < xj < b, with numbers of rats 
at each dose bounded, the m.l.e. stays consistent while min logit does not. So there! 
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6 'What Should I Do?' 

If the hallowed maximum likelihood principle leads us to difficulties, maybe some other 
principle will save us. 

There is indeed such a principle. It is as follows. 

Basic Principle 0. Do not trust any principle. 

This applies in particular to the principles and recommendations listed below and 
should be kept in mind any time one encounters a problem worth studying. Anyway, here 
are some other principles. 

Principle 1. Have clear in your mind what it is that you want to estimate. 

Principle 2. Try to ascertain in some way what precision you need (or can get) and 
what you are going to do with the estimate when you get it. 

Principle 3. Before venturing an estimate, check that the rationale which led you to it 
is compatible with the data you have. 

Principle 4. If satisfied that everything is in order, try first a crude but reliable 
procedure to locate the general area in which your parameters lie. 

Principle 5. Having localized yourself by (4), refine the estimate using some of your 
theoretical assumptions, being careful all the while not to undo what you did in (4). 

Principle 6. Never trust an estimate which is thrown out of whack if you suppress a 
single observation. 

Principle 7. If you need to use asymptotic arguments, do not forget to let your number 
of observations tend to infinity. 

Principle 8. J. Bertrand said it this way: 'Give me four parameters and I shall describe 
an elephant; with five, it will wave its trunk'. 

Counting the Basic Principle, this makes a total of nine. Confucius had many more, but 
I tire easily. 

Incidentally Principle 6 sounds like something Hampel would say. However I learned it 
in 1946 from E. Halphen. 

Now I will try to illustrate the principles by telling a story. 
It is a fictitious story, but it could have happened to me (and almost did). However to 

protect everybody, I shall pretend that it happened to my friend Paul. I have also changed 
some of the formulas and taken some other liberties. 

Paul was going to take n independent observations Xi from a certain distribution, 
reported to be a gamma distribution with density 

f(XI y, ) e--Xxa- (x > 0). 
r(cr) 

As we shall see later, the reasons for the choice of this formula were almost as good as 
any one encounters in practical settings. 

It is true that in certain cases one does have better reasons. For instance physicists are 
fairly certain that waiting times to disintegration for deuterium are exponentially 
distributed. But even there, the precision of the measurements, or some unknown feature 
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of the measurement process may make the actual observations deviate from exponential. 
See the article by J. Berkson on the subject. 

Paul's situation was somewhat different and more typical. In his case, as in many other 
ones, a and ft are there because something has to be there, but they are not the quantities 
of direct interest. One might be contemplating instead the possibility of estimating a 
median, an expectation, an interquartile range, the point t such that P[X > t] = 10-3 or 
the point s such that P[X < s] = 10-2 or even the average of another independent sample 
of 21 observations, discounting the largest and smallest. Principle 1 says that if Paul wants 
to estimate t, he should not try his best to estimate s instead. 

Paul wanted to estimate t because his boss told him to do so. In fact the boss is an 
engineer who has to decide on the size of the spillway needed for a certain dam. Paul will 
live some 50 years after the dam is completed. If the spillway is too small and a mighty 
flood occurs, the dam will overturn and Paul will lose his pension and his fishing rights. 
However if Paul's estimate is too large and out of line with usual practices, his boss will 
tell him to go soak his head and stop wasting taxpayers' money. 

Then the boss will take Paul's estimate and multiply it by a safety factor of two no 
matter what. 

With all this information I shall let you apply Principle 2. Remember that if Paul knew t 
exactly and used that for the design, his probability of losing his pension would be about 
5%. 

The observations Xi that Paul can use are the yearly peak floods for the past 26 years. 
They were measured very accurately as things go. For the large ones the precision is 
reported to be 20% or so. However the year 2000 was very very dry. Even the peak flood 
ran mostly under the gravel of the river bed. It is admitted that the measurements that 
year could be off by a factor of 5 or maybe 7 either way. 

Furthermore the peak flood of 2001 occurred early and most of the rain replenished the 
ground water and did not reach the river. Paul applies Principle 3 and decides that (i) the 
Xi are independent, (ii) there is not much trend in them even though silt deposited in the 
river bed and that was not taken into account in the measurements, and (iii) the Xi are 
indeed gamma distributed. 

Paul is absolutely certain about (iii) even though he carried out a Kolmogorov-Smirnov 
test which gave him a distance 

n2 sup IFn(x) - F(x, , )1 = 1-6. 
x 

He has to be certain because his boss spent the best part of his life proving that floods 
are indeed gamma distributed and independent from year to year. He has published 
numerous papers and a book on the subject. 

Paul is satisfied and applies Principle 4. He uses auxiliary estimates, getting a 
confidence interval for the median from suitable order statistics. He does the same for the 
interquartile range and ventures a guess for t. 

The boss says 'That won't do. Fisher has shown that maximum likelihood is best. 
Where have you learned your statistics?'. 

Paul agrees reluctantly. The m.l.e. depend on ilogXi and Ei Xi. They are easily 
computable. However they do not even fall in the range indicated by the previous 
computations on medians and interquartile ranges. This is partly due to that very very dry 
year of 2000 which may be off by a factor of seven. 

Paul tries to explain Principles 5 and 6 to his boss. The boss refuses to listen. Paul is 
miffed and decides to see what would happen if he used the formulas proposed by some 
of his boss' competitors and enemies. 

One of the competitors, a Dr. G, has a perfectly rigorous demonstration that the 
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formula to use should not be gamma but such that 

P[X x] = expxp -x 
- 

a)} 

for some numbers a and b. Another competitor, Dr. S, has proved long ago that the Xi 
are log normal or at least that there are always constants a, b, c and a such that 

Xi = [ez + a][beaz' + c]-1 

with Zi Gaussian, N(0, 1). The log normal case is in the particular case where b = 0. 
Still another competitor Dr. F says that the procedure to use is to plot the data 

cumulatively on log-probit paper, fit a polynomial and extrapolate it. 
Dr. F's rationale is that you cannot assume a particular analytic form for the 

distribution, but you can mimic anything you please by polynomials of high enough order. 
See the recent paper by Breiman & Stone (1985). 

To check what would happen, Paul tries a Monte Carlo experiment using Dr. F's 
method with polynomials of increasingly higher degree. He finds that linear or quadratic 
is not too bad, but that for higher degrees the prediction so obtained is totally unreliable. 
That reminds him of Bertrand's elephant and makes him suspicious of Dr. S' general 
formula also. 

Indeed he quickly realizes that he can fix the median of Xi and a point, say x0 such that 
P[X > xo] = 10-1 and still vary the point t such that P[X ` t] = 10-3 by factors of 2 or 3. 

In fact many of the curves he can obtain readily fit his observations, if one can judge by 
X2 or Kolmogorov-Smirnov. However they do lead to vastly different estimates of t. 

Even if he takes the simplest log normal Xi=e"+"zi, he finds that this leads to 
estimates which are about 1.2 times those obtained from gamma and about 1.5 times 
those obtained from Dr. G's formula. What Paul finally did, I will not tell you, except 
that he asked to have a few years to study the problem. 

However to obtain good estimates in Dr. S' formulas was not too easy. Paul had to 
have recourse to asymptotic arguments. We have already seen in ? 2 that the maximum 
likelihood technique does not work well in the case where b = 0. It is even worse if b can 
be positive. 

All is not lost however. One can often obtain fairly easily estimates which are 
asymptotically best in some sense. I will now describe one possible procedure for the case 
of the three parameter log normal, that is Dr. S' formula with b = 0. 

It is a technique that relies on the fact that near the true value of the parameter the log 
likelihood Ei logf(xi; 0) are often approximable by expressions that are linear-quadratic 
in 0. This is true for instance in Examples 1, 2, 3 of ? 2. It is also true for Example 4 if it 
happens that a > 2. It is of course not true for Example 5 and suggests terrible things for 
the Neyman-Scott example. The idea is to localize the problem (Principle 4) and then fit 
a linear-quadratic expression to the log likelihood. One then treats that fitted expression as 
if it was a Gaussian log likelihood. Sometimes one needs to take a few extra precautions 
as in Example 1 or Example 3. There, one needs to avoid working around values where 
the likelihood function misbehaves. Officially and asymptotically this can be achieved by 
suitable discretization of auxiliary estimates. For practical purposes Principle 0 must be 
duly honored and one must check that everything is under control. 

To return to the log normal, let m be the median of X and let q1 and q2 be the quartiles 
such that P[X < ql] = P[X > q2] = 4i 

If Zi is still N(0, 1) one can rewrite the log normal expression in the form 

i =m+(q )( V-1 ) 

where V = (q2 - m)/(m - q) and where c is a constant c = (0.6745)-1. 
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The parameters m, q1 and q2 can be estimated by their empirical counterparts, say th, 
q1, q2- The point t that Paul wanted to estimate could be estimated by substituting these 
estimates in 

t=m+(q2-m)( 1V- 

with k = 4-5815. 
These empirical estimates m, qq, q2 may not be the best obtainable here, at least if one 

assumes that the Xi are indeed log normal. A possible improvement procedure (Principle 
5) is as follows. Let 0 = (m, ql, q2) for short. For two values 00 and 01 let An(01, 0o) be 
the logarithm of likelihood ratio 

An(01, o)=) logf ) 
f(Xi, 0o) 

Let 0 = (i , , 42) and compute An(01, 0) for values 01 of the form 

01 = 0+ (Uj + k)/n (j =0,1,2,3; k = 0,1,2,3), 

where u0 = 0 and the ui, j = 1,2,3, form a basis in three dimensional space. For instance 
one may take u1 = (1, 0, 0), u2 = (0, 1, 0) and U3 = (0, 0, 1). 

The next step is to fit a quadratic to the values of An so obtained. One then takes for 
improved estimate the point Tn which maximizes the quadratic. 

This sound very much like trying to get the m.l.e. by approximation. However it is not 
the same thing as looking for the m.l.e. We have already seen that in the present case this 
does not work. 

On the contrary one can show that for the log normal case the estimate T, is 
asymptotically normal, asymptotically sufficient, etc. 

Here we have used a particular auxiliary estimate 0, but the choice of preliminary 
estimate matters relatively little asymptotically, as long as {L[/n(0n - 0) 810]} is a 
relatively compact sequence. 

If the influence of the choice of 0 is deemed pernicious, one can repeat the above 
improvement procedure using Tn instead of On. This will give a second estimate Tn. The 
influence of 0n is now (relatively little)2. 

However one should be careful. Iterating the procedure might conceivably lead toward 
the m.l.e. and that must be avoided in all but special cases. What one might want to do is 
try the procedure several times with different bases to see whether it makes any 
substantial difference and to check on the quality of the quadratic approximation to the 
log likelihood. One might also trace the contours of the likelihood function to see how 
they look. See for instance Hodges (1987). 

In any event I recommend the general procedure enthusiastically and without any 
reservations for all those cases where it does work. 

In spite of the fact that the procedure does work, at least at times, some people are 
never satisfied and they have complained. The procedure is too arbitrary. It entails the 
choice of an auxiliary estimate, of bases and even something more dangerous: the choice 
of a parametrization. Indeed we have used a local approximation of the log likelihood by 
a quadratic expression. Quadratic in what variables? The problem goes away 'as n tends 
to infinity' but it does not for the particular n you have. For instance, in a binomial 
situation should one parametrize by the binomial p? By arcsin Vp? By log[p/( -p)]? 
Who says 'quadratic' says Euclidean or Hilbert space. There are indications that the 'best' 
parametrization is the one where the usual Euclidean distance between parameter values 
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u and v is close to {-log f [dPu dPJ]l)}. See for instance Mammen (1988). However 
that work deals only with the case where the matrix in the quadratic is nearly 
non-random. Since the estimation method works even in cases where the matrix in the 
quadratic is genuinely random, something remains to be studied. I have not done all my 
homework. In spite of this, I will still recommend the procedure whenever it works. 

I shall not insist on all of this. It is more important to return to Principle 5. Presumably 
the passage from 0 to T, was supposed to be an improvement. However in the 
computation of the A, used above one will encounter terms which look like E log (Xi - c) 
or E [log (Xi - c)]2. It is true that they find themselves multiplied by factors of the order 
(1//n). However this is not enough to prevent them from doing some mischief. 

Principle 5 says that T, is supposed to improve on 0, not undo it. 
Now one can readily find confidence intervals for (m, ql, q2) using order statistics. For 

instance for m one can use order statistics with ranks about (-n ? kVn), with a suitable k. 
What is one supposed to do if the improved estimate Tn = (m, q1, q2) is such that m is 

not in the confidence interval so obtained? Or if plotting the cumulative at the estimated 
values Tn one finds it outside of the Kolmogorov-Smirnov band? 

There are at present no standard procedures to handle this. One ad hoc procedure is to 
eliminate from the computation all the |log (Xi - c)I which are too big, or restrain them in 
some way. Another procedure would be to decide in advance that all values of Xi outside 
a certain interval [Y1, 72] will be thrown away. 

If, however, the purpose is to estimate Paul's t, I would not want to eliminate the large 
values of the Xi. 

When Tn differs too much from 0, there are usually some reasons. One of them is that 
the improvement procedure is only justified if the function 0 -> A (0, 0) is indeed close 
to a quadratic. (If it was known to be close to some other smooth function, one might 
want to use that function instead.) Also, the quadratics are often so flat that their 
maximum is badly determined. 

The same kind of thing can happen in other similar methods, such as 'scoring' or 
'Newton-Raphson'. 

There is not too much one can do about it except let n tend to infinity (Principle 7), but 
Paul who got only one observation per year could not wait that long, even though his boss 
allowed him a few years to study the situation. 

However, at least in some cases, the fact that the 'improved' estimate T, falls out of all 
reasonable bounds is simply due to the fact that the specific model used to compute the 
A, is too far from reality. One can check that, but only to a very limited extent, by 
standard tests. The fact that T, differs too much from 0 provides another such test. 

Here we have worked within an assumed model. Beran (1981) has proposed a clever 
procedure to work around an assumed model instead of within it. The procedure can be 
misrepresented as follows. Suppose that the model specifies a certain family of densities 
F = {f(x, 0); 0 E 0} for which you would not hesitate to use a Newton-Raphson type of 
procedure to produce an m.l.e. Suppose for simplicity that the observations are real 
variables and construct their empirical cumulative F,. Let 

p,= inf sup n2 IF,(x) - F(x, 0) 
0 x 

and assume that n, achieves that infimum. Take the score function 

(x, 0)= logf(x, 0). 

Instead of using Newton-Raphson starting with n-~ E (xi, On), tone down ( replacing 
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0(xi, On) by something like min [a,, max (-a,, 4(xi; On))], where a, is taken large if p, is 
small and closer and closer to zero as p, increases. (Beran's procedure is more complex, 
but this does not pretend to be a description of it, only a misrepresentation!) Beran shows 
that the procedure has definite merits. It works efficiently if the model is correct. If the 
model does not fit it too well, the estimate one gets is close to n,. It still makes some 
sense and is robust. 

There is a slight difficulty with this approach. What if p, appears too large, for instance 
larger than three or four? This is a strong indication that the postulated model is too far 
from reality. One might then want to review the situation and replace it by a different 
model. That is all right. However fiddling with the models until they fit is not always a 
commendable thing to do unless the result can be checked on a new independent set of 
data. Nowadays people do not hesitate to jackknife, bootstrap or otherwise resample with 
great abandon and thereby convince themselves that they have successfully bypassed all 
essential difficulties. However I feel more secure with a new independent sample. 

Some of the recipes to be found in the literature amount to deciding in advance that the 
'true' A,(01, 00) is likely to misbehave and replace in A, the functions 
log [f(x, 2)/f(x, 01)] by some other functions, say p(x, 02, 01) chosen in a fairly 
arbitrary manner. One is led then to the M-estimates. 

This being said, we should return to Principle 7. It has several aspects. I will touch only 
one of them here, because it tends to be forgotten. 

Suppose that you do have a large number of observations, say 109. This is still very far 
from ifinity, but suppose that you hesitate between two estimates, say T' and T", and 
that you are told that T" has an expected square deviation smaller than that of Tc by an 
amount of the order n2 = 10-18. 

If deviations of that size do matter to you (and they might at times), you had better 
check everything very carefully. There are probably a lot of little things which could have 
happened to your observations and could make vastly larger differences. Also the 
particular formula you use for f(x, 0) needs to be very seriously justified. 

In other words the criteria you might use to choose between T' and T" may well look 
at tiny differences which get magnified as n -> oo but are of little interest to you for the 
particular n you have. I don't mean to imply that one should not look at tiny things. What 
I am trying to say is that, if possible, the method or procedure, or optimality principle 
used to select the estimation procedure should preferably have some sort of stability, so 
that its dictates would not be grossly affected by deviations from the assumptions which 
are invisible on the data. 

If the method is not stable in this sense it may be reasonable to check afterwards that 
the estimate it suggests behaves in a reasonable manner. 

Finally suppose that in spite of all of this you have decided to use the Tn obtained by 
improving 0, partly because you can show that it is asymptotically sufficient, etc. and 

partly because you did not think of anything else. 
That does not necessarily mean that you should use Tn itself as your estimate. 
There may be functions or modifications of Tn which are better suited to your purposes. 
That is where we left Berkson and Hodges trying to find functions of the sufficient 

statistics which had a desirable bias and is perhaps as good a place as any to stop. 
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Resume 

L'auteur a oui dire que la m6thode du maximum de vraisemblance est la meilleure mdthode d'estimation. 
C'est bien vrai, et pourtant la m6thode se casse le nez sur des exemples bien simples qui n'avaient pas det 
inventes pour le plaisir de montrer que la methode peut etre tres d6sagr6able. On en donne quelques-uns, plus 
un autre, imit6 de Bahadur et fabrique expres pour ennuyer les admirateurs du maximum de vraisemblance. Ce 
fait, on donne une savante liste de principes de construction de bons estimateurs, le principe principal dtant qu'il 
ne faut pas croire aux principes. 
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