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An Inconsistent Maximum Likelihood Estimate 

THOMAS S. FERGUSON* 

An example is given of a family of distributions on [ - 1, 
1] with a continuous one-dimensional parameterization 
that joins the triangular distribution (when 0 = 0) to the 
uniform (when 0 = 1), for which the maximum likelihood 
estimates exist and converge strongly to 0 = 1 as the 
sample size tends to infinity, whatever be the true value 
of the parameter. A modification that satisfies Cramer's 
conditions is also given. 

KEY WORDS: Maximum likelihood estimates; Incon- 
sistency; Asymptotic efficiency; Mixtures. 

1. INTRODUCTION 

There are many examples in the literature of estimation 
problems for which the maximum likelihood principle 
does not yield a consistent sequence of estimates, notably 
Neyman and Scott (1948), Basu (1955), Kraft and LeCam 
(1956), and Bahadur (1958). In this article a very simple 
example of inconsistency of the maximum likelihood 
method is presented that shows clearly one danger to be 
wary of in an otherwise regular-looking situation. A re- 
cent article by Berkson (1980) followed by a lively dis- 
cussion shows that there is still interest in these problems. 

The discussion in this article is centered on a sequence 
of independent, identically distributed, and, for the sake 
of convenience, real random variables, Xl, X2, . . 
distributed according to a distribution, F(x I 0), for some 
0 in a fixed parameter space 0. It is assumed that there 
is a ur-finite measure with respect to which densities, f(x I 
0), exist for all 0 E 0. The maximum likelihood estimate 
of 0 based on X1,. .., X is a value, On(x, . .., xn) of 
0 E 0, if any, that maximizes the likelihood function 

n 

Ln (0) = H f(xi I 0) 
i = I 

The maximum likelihood method of estimation goes back 
to Gauss, Edgeworth, and Fisher. For historical points, 
see LeCam (1953) and Edwards ('972). For a general 
survey of the area and a large bibliography, see Norton 
(1972). 

The starting point of our discussion is the theorem of 
Cramer (1946, p. 500), which states that under certain 
regularity conditions on the densities involved, if 0 is real 
valued and if the true value 00 is an interior point of 0, 
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then there exists a sequence of roots, 0), of the likelihood 
equation, 

-log Lnf(O) = 0, ao 
that converges in probability to Oo as n m. Moreover, 
any such sequence 0,, is asymptotically normal and 
asymptotically efficient. It is known that Cramer's theo- 
rem extends to the multiparameter case. 

To emphasize the point that this is a local result and 
may have nothing to do with maximum likelihood esti- 
mation, we consider the following well-known example, 
a special case of some quite practical problems mentioned 
recently by Quandt and Ramsey (1978). Let the density 
f(x I 0) be a mixture of two normals, N(O, 1) and N(i, 
(c2), with mixing parameter 2, 

f(x I P, a) = 2 p(x) + 2 ((- )Io)I, 

where 'p is the density of the standard normal distribution, 
and the parameter space is 0 = {(p, r): u > 0}. It is clear 
that for any given sample, XI, . . , X, from this density 
the likelihood function can be made as large as desired 
by taking 11 = XI, say, and r sufficiently small. Never- 
theless, Cramer's conditions are satisfied and so there 
exists a consistent asymptotically efficient sequence of 
roots of the likelihood equation even though maximum 
likelihood estimates do not exist. 

A more disturbing example is given by Kraft and 
LeCam (1956), in which Cramer's conditions are satis- 
fied, the maximum likelihood estimate exists, is unique, 
and satisfies the likelihood equation, but is not consistent. 
In such examples, it is possible to find the asymptotically 
efficient sequence of roots of the likelihood equation by 
first finding a consistent extimate and then finding the 
closest root or improving by the method of scoring as in 
Rao (1965). See Lehmann (1980) for a discussion of these 
problems. 

Other more practical examples of inconsistency in the 
maximum likelihood method involve an infinite number 
of parameters. Neyman and Scott (1948) show that the 
maximum likelihood estimate of the common variance of 
a sequence of normal populations with unknown means 
based on a fixed sample size k taken from each population 
converges to a value lower than the true value as the 
number of populations tends to infinity. This example led 
directly to the paper of Kiefer and Wolfowitz (1956) on 
the consistency and efficiency of the maximum likelihood 
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estimates with infinitely many nuisance parameters. An- 
other example, mentioned in Barlow et al. (1972), in- 
volves estimating a distribution known to be star-shaped 
(i.e., F(Ax) s XF(x) for all 0 < A s 1 and all x such that 
F(x) < 1). If the true distribution is uniform on (0, 1), the 
maximum likelihood estimate converges to F(x) = X2 on 
(0, 1). 

The central theorem on the global consistency of max- 
imum likelihood estimates is due to Wald (1949). This 
theorem gives conditions under which the maximum like- 
lihood estimates and approximate maximum likelihood 
estimates (values of 0 that yield a value of the likelihood 
function that comes within a fixed fraction c, 0 < c < 1, 
of the maximum) are strongly consistent. Other formu- 
lations of Wald's Theorem and its variants may be found 
in LeCam (1953), Kiefer and Wolfowitz (1956), Bahadur 
(1967), and Perlman (1972). A particularly informative 
exposition of the problem may be found in Chapter 9 of 
Bahadur (1971). 

The example contained in Section 2 has the following 
properties: 

1. The parameter space 0 is a compact interval on the 
real line. 

2. The observations are independent identically dis- 
tributed according to a distribution F(x I 0) for some 0 
E0. 

3. Densities f(x I 0) with respect to some ur-finite 
measure (Lebesgue measure in the example) exist and 
are continuous in 0 for all x. 

4. (Identifiability) If 0 # 0', then F(x I 0) is not iden- 
tical to F(x I 0'). 

It is seen that whatever the true value, 00, of the pa- 
rameter, the maximum likelihood estimate, which exists 
because of 1, 2, and 3, converges almost surely to a fixed 
value (1 in the example) independent of 00. 

Example 2 of Bahadur (1958) (Example 9.2 of Bahadur 
1971) also has the properties stated previously, and the 
example of Section 2 may be regarded as a continuous 
version of Bahadur's example. However, the distribu- 
tions in Bahadur's example seem rather artificial and the 
parameter space is countable with a single limit point. 
The example presented here is more natural; the sample 
space is [- 1, + 1], the parameter space is [0, 1], and the 
distributions are familiar, each being a mixture of the 
uniform distribution and a triangular one. 

In Section 3, it is seen how to modify the example using 
beta distributions so that Cramer's conditions are satis- 
fied. This gives an example in which asymptotically ef- 
ficient estimates exist and may be found by improving 
any convenient O(\/)-consistent estimate by scoring, 
and yet the maximum likelihood estimate exists and even- 
tually satisfies the likelihood equation but converges to 
a fixed point with probability 1 no matter what the true 
value of the parameter happens to be. Such an example 
was announced by LeCam in the discussion of Berkson's 
(1980) paper. 

2. THE EXAMPLE 

The following densities on [ - 1, 1] provide a continuous 
parameterization between the triangular distribution (when 
0 = 0) and the uniform (when 0 = 1) with parameter 
space 0 =[0, 1]: 

f(x I 0)=(1 - 0)5(0) 
I I - 0) 

X IA(X) + 2 

where A represents the interval [0 - 8(0), 0 + 8(0)], 
8(0) is a continuous decreasing function of 0 with 8(0) 
= 1 and 0 < 8(0) c 1 - 0 for 0 < 0 < 1, and Is(x) 
represents the indicator function of the set S. For 0 = 
1, f(x I 0) is taken to be ' I[l l](x). It is assumed that 
independent identically distributed observations X1, X2, 
... are available from one of these distributions. Then 
conditions 1 through 4 of the introduction are satisfied. 
These conditions imply the existence of a maximum like- 
lihood estimate for any sample size because a continuous 
function defined on a compact set achieves its maximum 
on that set. 

Theorem. Let 0, denote a maximum likelihood estimate 
of 0 based on a sample of size n. If 8(0) -O 0 sufficiently 
fast as 0 --*1 (how fast is noted in the proof), then 0,n 
--*1 with probability 1 as n c m, whatever be the true 
value of 0 E [0, 1]. 

Proof. Continuity of f(x I 0) in 0 and compactness of 
0 implies that the maximum likelihood estimate, 0,n, some 
value of 0 that maximizes the log-likelihood function 

n 

ln (0) = log f(xi 0) 
i= 1 

exists. Since for 0 < 1 
1 -0 0 1 

f(x I ) '5(0) 2 5(0) 2 

we have that for each fixed positive number o t 1, 
1 1 o max -lIn(f0) <- + 'I 0 

o--cot n b((o) 

since 8(0) is decreasing. We complete the proof by show- 
ing that whatever be the true value of 0, 

maxI l() ---> ?O with probability one o-o-i n 

provided 8(0) -> 0 sufficiently fast as 0 1-> , since then 
On will eventually be greater than a for any preassigned 
a < 1. Let Mn = max{X ,... , Xn}. Then Mn,-> 1 with 
probability one whatever be the true value of 0, and since 
O < Mn < 1 with probability one, 

max -I ln(0) - I ln(Mn) 
O-OI fl fn 

_n-i1 Mn, 1 1 -Mn, -log 2y+-nlog 5(M,,) 
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Therefore, with probability one 

lim inf max 1 1n(0))-logI 
n xo-oc 1 n 2 

+ lrn inf 
I 

logI 
M 

n --> n 8 8(Mn) 

Whatever be the value of 0, Mn converges to 1 at a certain 
rate, the slowest rate being for the triangular (0 = 0) 
since this distribution has smaller mass than any of the 
others in sufficiently small neighborhoods of 1. Thus we 
can choose 8(0) -> 0 so fast as 0 1-> that (1/n) log((1 
- Mn)l(Mn)) -X oo with probability one for the triangular 
and hence for all other possible true values of 0, com- 
pleting the proof. 

How fast is fast enough? Take 0 = 0 and note that if 
0< E < 1, 

Y, PO(N_( 1- Mn ) > e) = Po(Mn < 1 - n 
n n 

= >Po(X< 1 en - l/4)n 
n 

= E(-2 ,2n-1/2) n 
n 

nEexp(- 12 E2 N/) < ?? 
n 

so that by the Borel-Cantelli Lemma, "G_(1 - MO) -> 0 
with probability one. Therefore, the choice 

8(0) = (1 - 0)exp(-(1 - O)-4) + 1 

gives a 8(0) that is continuous, decreasing, with 8(0) = 

1, 0 < 8(0) < 1 - 0 for 0 < 0 < 1, and 

1 1 -Mn 1 1 
- log 

- - 
I o 

n 8(Mn) n(I - Mn)4 n 

with probability one. 
Although the maximum likelihood method fails asymp- 

totically in this example, other methods of estimation can 
yield consistent estimates. Bayes methods, for example, 
would be strongly consistent for almost all 0 with respect 
to the prior distribution, as implied by a general argument 
of Doob (1948). Simpler computationally, but not gen- 
erally as accurate, are the estimates given by the method 
of moments or minimum x2 based on a finite number of 
cells, and such methods can be made to yield consistent 
estimates. Estimates that are consistent may also be con- 
structed by the minimum distance method of Wolfowitz 
(1957). 

If one simple condition were added to conditions 1 
through 4 of the introduction, the argument of Wald (1949) 
would imply the strong consistency of the maximum like- 
lihood estimates. This is a uniform boundedness condi- 
tion that may be stated as follows: Let 0o denote the true 
value of the parameter. Then the maximum likelihood 
estimate f0,, converges to 0o with probability one provided 
conditions 1 through 4 hold and 

5. There is a function K(x) ? 0 with finite expectation, 

Eo0K(x) = f K(x)f(x I Oo) dx < 00, 

such that 

log f(x I 0) 
< K(x) for all x and all 0. 

(To get global consistency this assumption must be made 
for all 0o E 0, but K(x) may depend on 00.) This condition 
is therefore not satisfied in the example. It would be 
satisfied if the parameter space were limited to, say, [0, 
1 - E] since the density would then be bounded. 

3. A DIFFERENTIABLE MODIFICATION 

Without much difficulty, this example can be modified 
so that the densities satisfy Cramer's conditions for the 
existence of an asymptotically efficient sequence of roots 
of the likelihood equation. This amounts to modifying the 
distributions so that the resulting density, f(x I 0), (a) has 
two continuous derivatives that may be passed beneath 
the integral sign in f f(x I 0)dx 1, (b) has finite and 
positive Fisher information at all points 0 interior to 0, 
and (c) satisfies I a2/ao2 f(x I 0) I < K(x) in some neigh- 
borhood of the true 00, where K(x) is Oo-integrable. The 
simplest modification is to use the family of beta densities 
on [0, 1] as follows. Let g denote the density of the Be(oa, 
,B) distribution, 

9(xI t,B) 
r (t + ?) x -I(l - x)-l I[O,1](X), 
F(oL-)F(13) 

and let f be the density of the mixture of a Be(l, 1) 
(uniform) and a Be(ot, 13), 

f(x I 0) = Og(x I 1, 1) + (1 - 0)g(x I a(0), ,B(0)), 

where a(0) and 13(0) are chosen to be twice continuously 
differentiable and to give the density a very sharp peak 
close to 0, say mean 0 and variance tending to 0 suffi- 
ciently fast as 0 -> 1. Thus we take 0 = [2, 1], 

a(0) = 08(0), and 13(0) = (1 - 0)8(0). 

The particular form of 8(0) is not important. What is 
important is that 

1. 8(0) is twice continuously differentiable, 
2. (1 - 0)8(0), and hence 8(0), is increasing on [1, 1), 
3. 8(2) > 2 (to obtain identifiability), and 
4. 5(0) tends to oo sufficiently fast as 0 -> 1. 

For0 = 1, f(x I 1) is defined to be g(x I 1, 1). Then f(x I 
0) is continuous in 0 E [L, 1] for each x, and for the true 
00 E (2, 1), Cramer's conditions are satisfied. 

The proof that every maximum likelihood sequence 
converges to 1 with probability one as n -X0 no matter 
what the true value of 0 E [1, 1] is completely analogous 
to the corresponding proof in Section 2, except that in 



834 Journal of the American Statistical Association, December 1982 

the inequalities, Stirling's formula in the form 

2 a-(1/2) e -?1 7 (a) 

_:< Vg 
(x a - (1/2) exp(-o. + (1/12a)) 

as in Feller (1950, p. 44) is useful. In this example, the 
slowest rate of convergence of maxi?Xi to 1 occurs for 
0 = -. By the method of Section 2, it may be calculated 
that the function 

6(0) = (1 - 0)1 exp((1 - 0)-2) 

converges to X sufficiently fast and satisfies conditions 
1 to 4 of this section. 

[Received October 1980. Revised April 1982.] 
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