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Section 8: Asymptotic Properties of the MLE

In this part of the course, we will consider the asymptotic
properties of the maximum likelihood estimator. In particular, we
will study issues of
consistency, asymptotic normality, and efficiency. Many of the
proofs will be rigorous, to display more generally useful techniques
also for later chapters.

We suppose that Xn = (X1, . . . , Xn), where the Xi’s are i.i.d. with
common density p(x; θ0) ∈ P = {p(x; θ) : θ ∈ Θ}. We assume that
θ0 is identified in the sense that if θ �= θ0 and θ ∈ Θ, then
p(x; θ) �= p(x; θ0) with respect to the dominating measure µ.
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For fixed θ ∈ Θ, the joint density of Xn is equal to the product of
the individual densities, i.e.,

p(xn; θ) =
n∏

i=1

p(xi; θ)

As usual, when we think of p(xn; θ) as a function of θ with xn held
fixed, we refer to the resulting function as the likelihood function,
L(θ; xn). The maximum likelihood estimate for observed xn is the
value θ ∈ Θ which maximizes L(θ; xn), θ̂(xn). Prior to observation,
xn is unknown, so we consider the maximum likelihood estimator,
MLE, to be the value θ ∈ Θ which maximizes L(θ; Xn), θ̂(Xn).
Equivalently, the MLE can be taken to be the maximum of the
standardized log-likelihood,

l(θ; Xn)
n

=
log L(θ; Xn)

n
=

1
n

n∑
i=1

log p(Xi; θ) =
1
n

n∑
i=1

l(θ; Xi)



4

We will show that the MLE is often

1. consistent, θ̂(Xn) P→ θ0

2. asymptotically normal,
√

n(θ̂(Xn) − θ0)
D(θ0)→ Normal R.V.

3. asymptotically efficient, i.e., if we want to estimate θ0 by any
other estimator within a “reasonable class,” the MLE is the
most precise.

To show 1-3, we will have to provide some regularity conditions on
the probability model and (for 3) on the class of estimators that
will be considered.
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Section 8.1 Consistency

We first want to show that if we have a sample of i.i.d. data from a
common distribution which belongs to a probability model, then
under some regularity conditions on the form of the density, the
sequence of estimators, {θ̂(Xn)}, will converge in probability to θ0.

So far, we have not discussed the issue of whether a maximum
likelihood estimator exists or, if one does, whether it is unique. We
will get to this, but first we start with a heuristic proof of
consistency.
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Heuristic Proof

The MLE is the value θ ∈ Θ that maximizes
Q(θ; Xn) := 1

n

∑n
i=1 l(θ; Xi). By the WLLN, we know that

Q(θ; Xn) =
1
n

n∑
i=1

l(θ; Xi)
P→ Q0(θ) := Eθ0 [l(θ; X)]

= Eθ0 [log p(X ; θ)]

=
∫

{log p(x; θ)}p(x; θ0)dµ(x)

We expect that, on average, the log-likelihood will be close to the
expected log-likelihood. Therefore, we expect that the maximum
likelihood estimator will be close to the maximum of the expected
log-likelihood. We will show that the expected log-likelihood, Q0(θ)
is maximized at θ0 (i.e., the truth).
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Lemma 8.1: If θ0 is identified and Eθ0 [| log p(X ; θ)|] < ∞ for all
θ ∈ Θ, Q0(θ) is uniquely maximized at θ = θ0.

Proof: By Jensen’s inequality, we know that for any strictly
convex function g(·), E[g(Y )] > g(E[Y ]). Take g(y) = − log(y). So,
for θ �= θ0,

Eθ0 [− log(
p(X ; θ)
p(X ; θ0)

)] > − log(Eθ0 [
p(X ; θ)
p(X ; θ0)

])

Note that

Eθ0 [
p(X ; θ)
p(X ; θ0)

] =
∫

p(x; θ)
p(x; θ0)

p(x; θ0)dµ(x) =
∫

p(x; θ) = 1

So, Eθ0 [− log( p(X;θ)
p(X;θ0)

)] > 0 or

Q0(θ0) = Eθ0 [log p(X ; θ0)] > Eθ0 [log p(X ; θ)] = Q0(θ)

This inequality holds for all θ �= θ0.
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Under technical conditions for the limit of the maximum to be the
maximum of the limit, θ̂(Xn) should converge in probability to θ0.
Sufficient conditions for the maximum of the limit to be the limit of
the maximum are that the convergence is uniform and the
parameter space is compact.
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The discussion so far only allows for a compact parameter space. In
theory compactness requires that one know bounds on the true
parameter value, although this constraint is often ignored in
practice. It is possible to drop this assumption if the function
Q(θ; Xn) cannot rise too much as θ becomes unbounded. We will
discuss this later.
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Definition (Uniform Convergence in Probability): Q(θ; Xn)
converges uniformly in probability to Q0(θ) if

sup
θ∈Θ

|Q(θ; Xn) − Q0(θ)| P (θ0)→ 0

More precisely, we have that for all ε > 0,

Pθ0 [sup
θ∈Θ

|Q(θ; Xn) − Q0(θ)| > ε] → 0

Why isn’t pointwise convergence enough? Uniform convergence
guarantees that for almost all realizations, the paths in θ are in the
ε-sleeve. This ensures that the maximum is close to θ0. For
pointwise convergence, we know that at each θ, most of the
realizations are in the ε-sleeve, but there is no guarantee that for
another value of θ the same set of realizations are in the sleeve.
Thus, the maximum need not be near θ0.
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Theorem 8.2: Suppose that Q(θ; Xn) is continuous in θ and there
exists a function Q0(θ) such that

1. Q0(θ) is uniquely maximized at θ0

2. Θ is compact

3. Q0(θ) is continuous in θ

4. Q(θ; Xn) converges uniformly in probability to Q0(θ).

then θ̂(Xn) defined as the value of θ ∈ Θ which for each Xn = xn

maximizes the objective function Q(θ; Xn) satisfies θ̂(Xn) P→ θ0.



12

Proof: For a positive ε, define the ε-neighborhood about θ0 to be

Θ(ε) = {θ : ‖θ − θ0‖ < ε}

We want to show that

Pθ0 [θ̂(Xn) ∈ Θ(ε)] → 1

as n → ∞. Since Θ(ε) is an open set, we know that Θ ∩ Θ(ε)C is a
compact set (Assumption 2). Since Q0(θ) is a continuous function
(Assumption 3), then supθ∈Θ∩Θ(ε)C{Q0(θ)} is a achieved for a θ in
the compact set. Denote this value by θ∗. Since θ0 is the unique
max, let Q0(θ0) − Q0(θ∗) = δ > 0.
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Now for any θ, we distinguish between two cases.

Case 1: θ ∈ Θ ∩ Θ(ε)C .

Let An be the event that supθ∈Θ∩Θ(ε)C |Q(θ; Xn) − Q0(θ)| < δ/2.
Then,

An ⇒Q(θ; Xn) < Q0(θ) + δ/2

≤ Q0(θ∗) + δ/2

= Q0(θ0) − δ + δ/2

= Q0(θ0) − δ/2
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Case 2: θ ∈ Θ(ε).

Let Bn be the event that supθ∈Θ(ε) |Q(θ; Xn)−Q0(θ)| < δ/2. Then,

Bn ⇒ Q(θ; Xn) > Q0(θ) − δ/2 for all θ

⇒Q(θ0; Xn) > Q0(θ0) − δ/2

By comparing the last expressions for each of cases 1,2, we
conclude that if both An and Bn hold then θ̂ ∈ Θ(ε). But by
uniform convergence, pr(An ∩ Bn) → 1, so pr(θ̂ ∈ Θ(ε)) → 1.
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A key element of the above proof is that Q(θ; Xn) converges
uniformly in probability to Q0(θ). This is often difficult to prove.
A useful condition is given by the following lemma:

Lemma 8.3: If X1, . . . , Xn are i.i.d. p(x; θ0) ∈ {p(x; θ) : θ ∈ Θ}, Θ
is compact, log p(x; θ) is continuous in θ for all θ ∈ Θ and all x ∈ X ,
and if there exists a function d(x) such that | log p(x; θ)| ≤ d(x) for
all θ ∈ Θ and x ∈ X , and Eθ0 [d(X)] < ∞, then

i. Q0(θ) = Eθ0 [log p(X ; θ)] is continuous in θ

ii. supθ∈Θ |Q(θ; Xn) − Q0(θ)| P→ 0

Example: Suicide seasonality and von Mises’ distribution (in
class)
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Proof: We first prove the continuity of Q0(θ). For any θ ∈ Θ,
choose a sequence θk ∈ Θ which converges to θ. By the continuity
of log p(x; θ), we know that log p(x; θk) → log p(x; θ). Since
| log p(x; θk)| ≤ d(x), the dominated convergence theorem tells us
that Q0(θk) = Eθ0 [log p(X ; θk)] → Eθ0 [log p(X ; θ)] = Q0(θ). This
implies that Q0(θ) is continuous.

Next, we work to establish the uniform convergence in probability.
We need to show that for any ε, η > 0 there exists N(ε, η) such that
for all n > N(ε, η),

P [sup
θ∈Θ

|Q(θ; Xn) − Q0(θ)| > ε] < η
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Since log p(x; θ) is continuous in θ ∈ Θ and since Θ is compact, we
know that log p(x; θ) is uniformly continuous (see Rudin, page 90).
Uniform continuity says that for all ε > 0 there exists a δ(ε) > 0
such that | log p(x; θ1) − log p(x; θ2)| < ε for all θ1, θ2 ∈ Θ for which
‖θ1 − θ2‖ < δ(ε). This is a property of a function defined on a set
of points. In contrast, continuity is defined relative to a particular
point. Continuity of a function at a point θ∗ says that for all ε > 0,
there exists a δ(ε, θ∗) such that | log p(x; θ) − log p(x; θ∗)| < ε for all
θ ∈ Θ for which ‖θ − θ∗‖ < δ(ε, θ∗). For continuity, δ depends on ε

and θ∗. For uniform continuity, δ depends only on ε. In general,
uniform continuity is stronger than continuity; however, they are
equivalent on compact sets.



18

Aside: Uniform Continuity vs. Continuity

Consider f(x) = 1/x for x ∈ (0, 1). This function is continuous for
each x ∈ (0, 1). However, it is not uniformly continuous. Suppose
this function was uniformly continuous. Then, we know for any
ε > 0, we can find a δ(ε) > 0 such that |1/x1 − 1/x2| < ε for all
x1, x2 such that |x1 − x2| < δ(ε). Given an ε > 0, consider the
points x1 and x2 = x1 + δ(ε)/2. Then, we know that

| 1
x1

− 1
x2

| = | 1
x1

− 1
x1 + δ(ε)/2

| =
δ(ε)/2

x1(x1 + δ(ε)/2)

Take x1 sufficiently small so that x1 < min( δ(ε)
2 , 1

2ε). This implies
that

δ(ε)/2
x1(x1 + δ(ε)/2)

>
δ(ε)/2
x1δ(ε)

=
1

2x1
> ε

This is a contradiction.
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Uniform continuity also implies that

∆(x, δ) = sup
{(θ1,θ2):‖θ1−θ2‖<δ}

| log p(x; θ1) − log p(x; θ2)| → 0 (1)

as δ → 0. By the assumption of Lemma 8.3, we know that
∆(x, δ) ≤ 2d(x) for all δ. By the dominated convergence theorem,
we know that Eθ0 [∆(X, δ)] → 0 as δ → 0.

Now, consider open balls of length δ about each θ ∈ Θ, i.e.,
B(θ, δ) = {θ̃ : ‖θ̃ − θ‖ < δ}. The union of these open balls contains
Θ. This union is an open cover of Θ. Since Θ is a compact set, we
know that there exists a finite subcover, which we denote by
{B(θj , δ), j = 1, . . . , J}.
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Taking a θ ∈ Θ, by the triangle inequality, we know that

|Q(θ; Xn) − Q0(θ)| ≤ |Q(θ; Xn) − Q(θj ; Xn)| + (2)

|Q(θj ; Xn) − Q0(θj)| + (3)

|Q0(θj) − Q0(θ)| (4)

Choose θj so that θ ∈ B(θj ; δ). Since ‖θ − θj‖ < δ, we know that
(2) is equal to

| 1
n

n∑
i=1

{log p(Xi; θ) − log p(Xi; θj)}|

and this is less than or equal

1
n

n∑
i=1

| log p(Xi; θ) − log p(Xi; θj)| ≤ 1
n

n∑
i=1

∆(Xi, δ)
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We also know that (4) is less than or equal to

sup
{(θ1,θ2):‖θ1−θ2‖<δ}

|Q0(θ1) − Q0(θ2)|

Since Q0(θ) is uniformly continuous, we know that this bound can
be made arbitrarily small by choosing δ to be small. That is, this
bound can be made less than ε/3, for a δ < δ3.

We also know that (3) is less than

max
j=1,...,J

|Q(θj ; Xn) − Q0(θj)|

Putting these results together, we have that for any δ < δ3
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sup
θ∈Θ

|Q(θ; Xn) − Q0(θ)| ≤ 1

n

n�
i=1

∆(Xi, δ)

+ max
j=1,...,J

|Q(θj; Xn) − Q0(θj)| + ε/3
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So for any δ < δ3, we know that Pθ0 [supθ∈Θ |Q(θ; Xn)−Q0(θ)| > ε]

≤ Pθ0 [
1
n

n∑
i=1

∆(Xi, δ) + max
j=1,...,J

|Q(θj ; Xn) − Q0(θj)| > 2ε/3]

≤ Pθ0 [
1
n

n∑
i=1

∆(Xi, δ) > ε/3] + (5)

Pθ0 [ max
j=1,...,J

|Q(θj ; Xn) − Q0(θj)| > ε/3] (6)

Now, we can show that we can take n sufficiently large so that (5)
and (6) can be made small.
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Note that (5) is equal to

Pθ0 [
1
n

n∑
i=1

{∆(Xi, δ) − Eθ0 [∆(X, δ)]} + Eθ0 [∆(X, δ)] > ε/3]

We already have demonstrated that Eθ0 [∆(X, δ)] → 0 as δ → 0.
Choose δ small enough (< δ1)that Eθ0 [∆(X, δ)] < ε/6. Call this
number δ1. Take δ < min(δ1, δ3). Then (5) is less than

Pθ0 [
1
n

n∑
i=1

{∆(Xi, δ) − Eθ0 [∆(X, δ)]} > ε/6]

By the WLLN, we know that there exists N1(ε, η) so that for all
n > N1(ε, η), the above term is less than η/2. So, (5) is less than
η/2.
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For the δ considered so far, find the finite subcover
{B(θj , δ), j = 1, . . . , J}. Now, (6) is equal to

Pθ0 [∪J
j=1{|Q(θj ; Xn)−Q0(θj)| > ε/3}] ≤

J∑
j=1

Pθ0 [|Q(θj ; Xn)−Q0(θj)| > ε/3]

By the WLLN, we know that for each θj and for any η > 0, we
know there exists N2j(ε, η) so that for all n > N2j(ε, η)

Pθ0 [|Q(θj ; Xn) − Q0(θj)| > ε/3] ≤ η/(2J)

Let N2(ε, η) = maxj=1,...,J{N2j}. Then, for all n > N2(ε, η), we
know that

J∑
j=1

Pθ0 [|Q(θj ; Xn) − Q0(θj)| > ε/3] < η/2

This implies that (6) is less than η/2.
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Combining the results for (5) and (6), we have demonstrated that
there exists an N(ε, η) = max(N1(ε, η), N2(ε, η)) so that for all
n > N(ε, η),

Pθ0 [sup
θ∈Θ

|Q(θ; Xn) − Q0(θ)| > ε] < η

Q.E.D.
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Other conditions that might be useful to establish uniform
convergence in probability are given in the lemmas below.

Lemma 8.4 may be useful when the data are not independent.

Lemma 8.4: If Θ is compact, Q0(θ) is continuous in θ ∈ Θ,

Q(θ; Xn) P→ Q0(θ) for all θ ∈ Θ, and there is an α > 0 and C(Xn)
which is bounded in probability such that for all θ̃, θ ∈ Θ,

|Q(θ̃, Xn) − Q(θ, Xn)| ≤ C(Xn)‖θ̃ − θ‖α

then,

sup
θ∈Θ

|Q(θ; Xn) − Q0(θ)| P→ 0

Aside: C(Xn) is bounded in probability if for every ε > 0 there
exists N(ε) and η(ε) > 0 such that

Pθ0 [|C(Xn)| > η(ε)] < ε
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for all n > N(ε).
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Θ is Not Compact

Suppose that we are not willing to assume that Θ is compact. One
way around this is bound the objective function from above
uniformly in parameters that are far away from the truth. For
example, suppose that there is a compact set D such that

Eθ0 [ sup
θ∈Θ∩DC

{log p(X ; θ)}] < Q0(θ0) = Eθ0 [log p(X ; θ0)]

By the law of large numbers, we know that with probability
approaching one that

sup
θ∈Θ∩DC

{Q(θ; Xn)} ≤ 1
n

n∑
i=1

sup
θ∈Θ∩DC

log p(Xi; θ)

<
1
n

n∑
i=1

log p(Xi; θ0) = Q(θ0; Xn)
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Therefore, with probability approaching one, we know that θ̂(Xn)
is in the compact set D. Then, we can apply the previous theory to
show consistency.

The following lemma can be used in cases where the objective
function is concave.

Lemma 8.5: If there is a function Q0(θ) such that

i. Q0(θ) is uniquely maximized at θ0

ii. θ0 is an element of the interior of a convex set Θ (does not have
to be bounded)

iii. Q(θ, xn) is concave in θ for each xn, and

iv. Q(θ; Xn) P→ Q0(θ) for all θ ∈ Θ

then θ̂(Xn) exists with probability approaching one and

θ̂(Xn) P→ θ0.


