Section 8.2. Asymptotic normality

We assume that $X_n = (X_1, \ldots, X_n)$, where the X_i 's are i.i.d. with common density $p(x; \theta_0) \in \mathcal{P} = \{p(x; \theta) : \theta \in \Theta\}$. We assume that θ_0 is *identified* in the sense that if $\theta \neq \theta_0$ and $\theta \in \Theta$, then $p(x; \theta) \neq p(x; \theta_0)$ with respect to the dominating measure μ .

In order to prove asymptotic normality, we will need certain regularity conditions. Some of these were encountered in the proof of consistency, but we will need some additional assumptions.

Regularity Conditions

- i. θ_0 lies in the interior of Θ , which is assumed to be a compact subset of \mathbb{R}^k .
- ii. $\log p(x; \theta)$ is continuous at each $\theta \in \Theta$ for all $x \in \mathcal{X}$ (a.e. will suffice).
- iii. $|\log p(x;\theta)| \le d(x)$ for all $\theta \in \Theta$ and $E_{\theta_0}[d(X)] < \infty$.
- iv. $p(x;\theta)$ is twice continuously differentiable and $p(x;\theta) > 0$ in a neighborhood, \mathcal{N} , of θ_0 .
- v. $\left\|\frac{\partial p(x;\theta)}{\partial \theta}\right\| \le e(x)$ for all $\theta \in \mathcal{N}$ and $\int e(x)d\mu(x) < \infty$.

vi. Defining the score vector

$$\psi(x;\theta) = (\partial \log p(x;\theta) / \partial \theta_1, \dots, \partial \log p(x;\theta) / \partial \theta_k)'$$

then we assume that $I(\theta_0) = E_{\theta_0}[\psi(X;\theta_0)\psi(X;\theta_0)']$ exists and is non-singular.

vii.
$$\left\|\frac{\partial^2 \log p(x;\theta)}{\partial \theta \partial \theta'}\right\| \leq f(x)$$
 for all $\theta \in \mathcal{N}$ and $E_{\theta_0}[f(X)] < \infty$.
viii. $\left\|\frac{\partial^2 p(x;\theta)}{\partial \theta \partial \theta'}\right\| \leq g(x)$ for all $\theta \in \mathcal{N}$ and $\int g(x) d\mu(x) < \infty$.

Theorem 8.6: If these 8 regularity conditions hold, then

$$\sqrt{n}(\hat{\theta}(\boldsymbol{X}_n) - \theta_0) \stackrel{D(\theta_0)}{\to} N(0, I^{-1}(\theta_0))$$

Proof: Note that conditions i. - iii. guarantee that the MLE is consistent. Since θ_0 is assumed to lie in the interior of Θ , we know that with sufficiently large probability that the MLE will lie in \mathcal{N} and cannot be on the boundary. This implies that the maximum is also a local maximum, which implies that $\partial Q(\hat{\theta}(\boldsymbol{X}_n); \boldsymbol{X}_n) / \partial \theta = 0$ or $\frac{1}{n} \sum_{i=1}^{n} \psi(X_i; \hat{\theta}(\boldsymbol{X}_n)) = 0$. That is, the MLE is the solution to the score equations.

By the mean value theorem, applied to each element of the score vector, we have that

$$0 = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \psi(X_i; \hat{\theta}(X_n)) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \psi(X_i; \theta_0) + \{-J_n^*(X_n)\} \sqrt{n} (\hat{\theta}(X_n) - \theta_0)$$

Note that $J_n^*(\mathbf{X}_n)$ is a $k \times k$ random matrix where the *j*th row of the matrix is the *j*th row of J_n evaluated at $\theta_{jn}^*(\mathbf{X}_n)$ where $\theta_{jn}^*(\mathbf{X}_n)$ is an intermediate value between $\hat{\theta}(\mathbf{X}_n)$ and θ_0 . $\theta_{jn}^*(\mathbf{X}_n)$ may be different from row to row but it will be consistent for θ_0 .

We will establish two facts:

F1:
$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \psi(X_i; \theta_0) \xrightarrow{D(\theta_0)} N(0, I(\theta_0))$$

F2: $J_n^*(\boldsymbol{X}_n) \stackrel{P(\theta_0)}{\to} I(\theta_0)$

By assumption vi., we know that $I(\theta_0)$ is non-singular. The inversion of a non-singular matrix is a continuous function in θ . Since $J_n^*(\mathbf{X}_n) \xrightarrow{P} I(\theta_0)$, we know that $\{J_n^*(\mathbf{X}_n)\}^{-1} \xrightarrow{P} I(\theta_0)^{-1}$. This also means that with sufficiently large probability, as n gets large, $J_n^*(\mathbf{X}_n)$ is invertible.

Therefore, we know that

$$\sqrt{n}(\hat{\theta}(\boldsymbol{X}_n) - \theta_0) = \{J_n^*(\boldsymbol{X}_n)\}^{-1} \frac{1}{\sqrt{n}} \sum_{i=1}^n \psi(X_i; \theta_0)$$

We then use the Slutsky's theorem to conclude that

$$\sqrt{n}(\hat{\theta}(\boldsymbol{X}_n) - \theta_0) \xrightarrow{D} N(0, I(\theta_0)^{-1})$$

Establishing F1

The random vectors $\psi(X_1; \theta_0), \ldots \psi(X_n; \theta_0)$ are i.i.d. We need to show that they have mean zero. Then, $I(\theta_0)$ will be the covariance matrix of $\psi(X; \theta_0)$ and an application of the multivariate central limit theorem for i.i.d. random vectors gives the desired result.

We will show something stronger, namely $E_{\theta}[\psi(X;\theta)] = 0$ for all $\theta \in \mathcal{N}$. Condition v. guarantees that we can interchange integration and differentiation. Consider the case where k = 1. We know that $1 = \int p(x;\theta)d\mu(x)$ for all $\theta \in \mathcal{N}$. This implies that $0 = \frac{d}{d\theta} \int p(x;\theta)d\mu(x)$. Let's show that $\frac{d}{d\theta} \int p(x;\theta)d\mu(x) = \int \frac{d}{d\theta}p(x;\theta)d\mu(x)$. Choose a sequence $\theta_n \in \mathcal{N}$ such that $\theta_n \to \theta$. Then, by definition of a derivative, we know that

$$\frac{dp(x;\theta)}{d\theta} = \lim_{n \to \infty} \left\{ \frac{p(x;\theta_n) - p(x;\theta)}{\theta_n - \theta} \right\} \text{ for all } x \in \mathcal{X}$$

By the mean value theorem, we know that

$$p(x;\theta_n) = p(x;\theta) + \frac{dp(x;\theta_n^*)}{d\theta}(\theta_n - \theta)$$

where θ_n^* lies between θ and θ_n so that $\theta_n^* \in \mathcal{N}$. This implies that

$$\left|\frac{p(x;\theta_n) - p(x;\theta)}{\theta_n - \theta}\right| = \left|\frac{dp(x;\theta_n^*)}{d\theta}\right| \le e(x)$$

Since e(x) is integrable, we can employ the dominated convergence theorem. This says that

$$0 = \frac{d}{d\theta} \int p(x;\theta) d\mu(x) = \lim_{n \to \infty} \int \{\frac{p(x;\theta_n) - p(x;\theta)}{\theta_n - \theta}\} d\mu(x)$$
$$= \int \lim_{n \to \infty} \{\frac{p(x;\theta_n) - p(x;\theta)}{\theta_n - \theta}\} d\mu(x)$$
$$= \int \frac{dp(x;\theta)}{d\theta} d\mu(x)$$

This can be generalized to partial derivatives which can then be used to formally show that $E_{\theta}[\psi(X;\theta)] = 0$ for $\theta \in \mathcal{N}$. We know that $\int p(x;\theta)d\mu(x) = 1$. This implies that $\frac{\partial}{\partial \theta_j} \int p(x;\theta)d\mu(x) = 0$. By dominated convergence, we can interchange differentiation and integration so that $\int \frac{\partial p(x;\theta)}{\partial \theta_i} d\mu(x) = 0$. Then, we know that

$$\int \frac{\partial p(x;\theta)/\partial \theta_j}{p(x;\theta)} p(x;\theta) d\mu(x) = 0$$

We can divide by $p(x;\theta)$ since it is greater than zero for all $\theta \in \mathcal{N}$. This implies that $E_{\theta}[\psi_j(X;\theta)] = 0$.

Establishing F2

First, we shall study the large sample behavior of the matrix of second partial derivatives of the log-likelihood. Define

$$J_n(\theta) = \left[-\frac{1}{n}\sum_{i=1}^n \frac{\partial^2 \log p(X_i;\theta)}{\partial \theta \partial \theta'}\right]$$

This is a $k \times k$ random matrix.

We want to demonstrate that $E_{\theta_0}[J_n(\theta_0)] = I(\theta_0)$. We have already established that $\int \frac{\partial}{\partial \theta_j} p(x;\theta) d\mu(x) = 0$ for all $j = 1, \ldots, k$. This implies that

$$\frac{\partial}{\partial \theta_{j'}} \int \frac{\partial}{\partial \theta_j} p(x;\theta) d\mu(x) = 0 \text{ for all } j, j' = 1, \dots, k.$$

Since the norm of the matrix of second partial derivatives of $p(x;\theta)$ is bounded by an integrable function g(x) (see condition viii), we know that we can interchange integration and differentiation. This implies that

$$\int \frac{\partial^2 p(x;\theta)}{\partial \theta_{j'} \partial \theta_j} d\mu(x) = 0 \text{ for all } j, j' = 1, \dots, k$$

We note, however, that

$$\frac{\partial^2 \log p(x;\theta)}{\partial \theta_{j'} \partial \theta_j} = \frac{\partial^2 p(x;\theta)}{\partial \theta_{j'} \partial \theta_j} / p(x;\theta) - \psi_{j'}(x;\theta) \psi_j(x;\theta)$$

This implies that

$$\frac{\partial^2 p(x;\theta)}{\partial \theta_{j'} \partial \theta_j} = p(x;\theta) \left[\frac{\partial^2 \log p(x;\theta)}{\partial \theta_{j'} \partial \theta_j} + \psi_{j'}(x;\theta) \psi_j(x;\theta) \right]$$

So,

$$0 = \int \frac{\partial^2 p(x;\theta)}{\partial \theta_{j'} \partial \theta_j} d\mu(x) = \int p(x;\theta) \frac{\partial^2 \log p(x;\theta)}{\partial \theta_{j'} \partial \theta_j} d\mu(x) + \int p(x;\theta) \psi_{j'}(x;\theta) \psi_j(x;\theta) d\mu(x)$$

This implies that $I_{j'j}(\theta) = -E_{\theta}\left[\frac{\partial^2 \log p(X;\theta)}{\partial \theta_{j'} \partial \theta_j}\right]$. In matrix form, this says that $I(\theta) = E_{\theta}\left[-\frac{\partial^2 \log p(X;\theta)}{\partial \theta \partial \theta'}\right]$. So, $E_{\theta_0}[J_n(\theta_0)] = I(\theta_0)$.

By the weak law of large numbers, we know that

$$J_n(\theta) \xrightarrow{P} E_{\theta_0} \left[-\frac{\partial^2 \log p(X;\theta)}{\partial \theta \partial \theta'} \right]$$

Define $I_0^*(\theta) = E_{\theta_0}\left[-\frac{\partial^2 \log p(X;\theta)}{\partial \theta \partial \theta'}\right]$. Note that $I_0^*(\theta_0) = I(\theta_0)$.

The WLLN enables us to show that $J_n(\theta) \xrightarrow{P} I_0^*(\theta)$ for all $\theta \in \mathcal{N}$. This is pointwise convergence. However, as we will see shortly, this will not suffice to prove our desired results. We will need something stronger. We will have to show that $J_n(\theta)$ converges uniformly in probability to $I_0^*(\theta)$ for $\theta \in \mathcal{N}$. The proof we follow the exact same way as it did when we proved uniform convergence in probability for consistency. We know that $\frac{\partial^2 \log p(x;\theta)}{\partial \theta \partial \theta'}$ is continuous in $\theta \in \mathcal{N}$. This follows by assumption iv. By condition vii., we know that $\|\frac{\partial^2 \log p(x;\theta)}{\partial \theta \partial \theta'}\| \leq f(x)$ for $\theta \in \mathcal{N}$ and $E_{\theta_0}[f(X)] < \infty$. By the same proof of Lemma 8.3, we know that a. $I_0^*(\theta)$ is continuous for $\theta \in \mathcal{N}$ and b. $\sup_{\theta \in \mathcal{N}} \|J_n(\theta) - I_0^*(\theta)\| \xrightarrow{P} 0$.

This result is important because it allows us to prove the following lemma:

Lemma 8.7 If $\theta_n^*(\boldsymbol{X}_n)$ is a consistent estimator for θ_0 , then $J_n(\theta_n^*(\boldsymbol{X}_n)) \xrightarrow{P} I(\theta_0).$

Proof: By the triangle inequality, we know that

 $\|J_n(\theta^*(X_n)) - I(\theta_0)\| \le \|J_n(\theta^*(X_n)) - I_0^*(\theta^*(X_n))\| + \|I_0^*(\theta^*(X_n)) - I(\theta_0)\|$

So, it suffices to prove that 1. $||J_n(\theta^*(\boldsymbol{X}_n)) - I_0^*(\theta^*(\boldsymbol{X}_n))|| \xrightarrow{P} 0$ and 2. $||I_0^*(\theta^*(\boldsymbol{X}_n)) - I(\theta_0)|| \xrightarrow{P} 0.$

Since $I_0^*(\theta)$ is a continuous function of $\theta \in \mathcal{N}$, we know that $I_0^*(\theta^*(X_n)) \xrightarrow{P} I(\theta_0)$. This is because a continuous function of a consistent estimator converges in probability to the function of the estimand. So, 2 true.

In order to prove 1, we first note that with arbitrarily large probability and n sufficiently large, $\theta_n^*(X_n) \in \mathcal{N}$. When this happens, we have that

$$\|J_n(\theta_n^*(\boldsymbol{X}_n)) - I_0^*(\theta_n^*(\boldsymbol{X}_n))\| \le \sup_{\theta \in \mathcal{N}} \|J_n(\theta) - I_0^*(\theta)\| \xrightarrow{P} 0$$

So, we know that $J_n(\theta_{jn}^*(\boldsymbol{X}_n)) \xrightarrow{P(\theta_0)} I(\theta_0)$ for all j. This implies that $J_n^*(\boldsymbol{X}_n) \xrightarrow{P(\theta_0)} I(\theta_0)$.