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Section 8.2. Asymptotic normality

We assume that Xn = (X1, . . . , Xn), where the Xi’s are i.i.d. with
common density p(x; θ0) ∈ P = {p(x; θ) : θ ∈ Θ}. We assume that
θ0 is identified in the sense that if θ �= θ0 and θ ∈ Θ, then
p(x; θ) �= p(x; θ0) with respect to the dominating measure µ.

In order to prove asymptotic normality, we will need certain
regularity conditions. Some of these were encountered in the proof
of consistency, but we will need some additional assumptions.
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Regularity Conditions

i. θ0 lies in the interior of Θ, which is assumed to be a compact
subset of Rk.

ii. log p(x; θ) is continuous at each θ ∈ Θ for all x ∈ X (a.e. will
suffice).

iii. | log p(x; θ)| ≤ d(x) for all θ ∈ Θ and Eθ0 [d(X)] <∞.

iv. p(x; θ) is twice continuously differentiable and p(x; θ) > 0 in a
neighborhood, N , of θ0.

v. ‖∂p(x;θ)
∂θ ‖ ≤ e(x) for all θ ∈ N and

∫
e(x)dµ(x) <∞.
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vi. Defining the score vector

ψ(x; θ) = (∂ log p(x; θ)/∂θ1, . . . , ∂ log p(x; θ)/∂θk)′

then we assume that I(θ0) = Eθ0 [ψ(X ; θ0)ψ(X ; θ0)′] exists and
is non-singular.

vii. ‖∂2 log p(x;θ)
∂θ∂θ′ ‖ ≤ f(x) for all θ ∈ N and Eθ0 [f(X)] <∞.

viii. ‖∂2p(x;θ)
∂θ∂θ′ ‖ ≤ g(x) for all θ ∈ N and

∫
g(x)dµ(x) <∞.

Theorem 8.6: If these 8 regularity conditions hold, then

√
n(θ̂(Xn) − θ0)

D(θ0)→ N(0, I−1(θ0))
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Proof: Note that conditions i. - iii. guarantee that the MLE is
consistent. Since θ0 is assumed to lie in the interior of Θ, we know
that with sufficiently large probability that the MLE will lie in N
and cannot be on the boundary. This implies that the maximum is
also a local maximum, which implies that ∂Q(θ̂(Xn); Xn)/∂θ = 0
or 1

n

∑n
i=1 ψ(Xi; θ̂(Xn)) = 0. That is, the MLE is the solution to

the score equations.

By the mean value theorem, applied to each element of the score
vector, we have that

0 =
1√
n

n�

i=1

ψ(Xi; θ̂(Xn)) =
1√
n

n�

i=1

ψ(Xi; θ0)+{−J∗
n(Xn)}√n(θ̂(Xn)−θ0)

Note that J∗
n(Xn) is a k × k random matrix where the jth row of

the matrix is the jth row of Jn evaluated at θ∗jn(Xn) where
θ∗jn(Xn) is an intermediate value between θ̂(Xn) and θ0. θ∗jn(Xn)
may be different from row to row but it will be consistent for θ0.
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We will establish two facts:

F1: 1√
n

∑n
i=1 ψ(Xi; θ0)

D(θ0)→ N(0, I(θ0))

F2: J∗
n(Xn)

P (θ0)→ I(θ0)

By assumption vi., we know that I(θ0) is non-singular. The
inversion of a non-singular matrix is a continuous function in θ.
Since J∗

n(Xn) P→ I(θ0), we know that {J∗
n(Xn)}−1 P→ I(θ0)−1.

This also means that with sufficiently large probability, as n gets
large, J∗

n(Xn) is invertible.

Therefore, we know that

√
n(θ̂(Xn) − θ0) = {J∗

n(Xn)}−1 1√
n

n∑
i=1

ψ(Xi; θ0)
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We then use the Slutsky’s theorem to conclude that

√
n(θ̂(Xn) − θ0)

D→ N(0, I(θ0)−1)
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Establishing F1

The random vectors ψ(X1; θ0), . . . ψ(Xn; θ0) are i.i.d. We need to
show that they have mean zero. Then, I(θ0) will be the covariance
matrix of ψ(X ; θ0) and an application of the multivariate central
limit theorem for i.i.d. random vectors gives the desired result.

We will show something stronger, namely Eθ[ψ(X ; θ)] = 0 for all
θ ∈ N . Condition v. guarantees that we can interchange
integration and differentiation. Consider the case where k = 1. We
know that 1 =

∫
p(x; θ)dµ(x) for all θ ∈ N . This implies that

0 = d
dθ

∫
p(x; θ)dµ(x). Let’s show that

d
dθ

∫
p(x; θ)dµ(x) =

∫
d
dθp(x; θ)dµ(x). Choose a sequence θn ∈ N

such that θn → θ. Then, by definition of a derivative, we know that

dp(x; θ)
dθ

= lim
n→∞{p(x; θn) − p(x; θ)

θn − θ
} for all x ∈ X
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By the mean value theorem, we know that

p(x; θn) = p(x; θ) +
dp(x; θ∗n)

dθ
(θn − θ)

where θ∗n lies between θ and θn so that θ∗n ∈ N . This implies that

|p(x; θn) − p(x; θ)
θn − θ

| = |dp(x; θ
∗
n)

dθ
| ≤ e(x)

Since e(x) is integrable, we can employ the dominated convergence
theorem. This says that

0 =
d

dθ

∫
p(x; θ)dµ(x) = lim

n→∞

∫
{p(x; θn) − p(x; θ)

θn − θ
}dµ(x)

=
∫

lim
n→∞{p(x; θn) − p(x; θ)

θn − θ
}dµ(x)

=
∫
dp(x; θ)
dθ

dµ(x)
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This can be generalized to partial derivatives which can then be
used to formally show that Eθ[ψ(X ; θ)] = 0 for θ ∈ N . We know
that

∫
p(x; θ)dµ(x) = 1. This implies that ∂

∂θj

∫
p(x; θ)dµ(x) = 0.

By dominated convergence, we can interchange differentiation and
integration so that

∫ ∂p(x;θ)
∂θj

dµ(x) = 0. Then, we know that

∫
∂p(x; θ)/∂θj

p(x; θ)
p(x; θ)dµ(x) = 0

We can divide by p(x; θ) since it is greater than zero for all θ ∈ N .
This implies that Eθ[ψj(X ; θ)] = 0.
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Establishing F2

First, we shall study the large sample behavior of the matrix of
second partial derivatives of the log-likelihood. Define

Jn(θ) = [− 1
n

n∑
i=1

∂2 log p(Xi; θ)
∂θ∂θ′

]

This is a k × k random matrix.
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We want to demonstrate that Eθ0 [Jn(θ0)] = I(θ0). We have already
established that

∫
∂

∂θj
p(x; θ)dµ(x) = 0 for all j = 1, . . . , k. This

implies that

∂

∂θj′

∫
∂

∂θj
p(x; θ)dµ(x) = 0 for all j, j′ = 1, . . . , k.

Since the norm of the matrix of second partial derivatives of p(x; θ)
is bounded by an integrable function g(x) (see condition viii), we
know that we can interchange integration and differentiation. This
implies that

∫
∂2p(x; θ)
∂θj′∂θj

dµ(x) = 0 for all j, j′ = 1, . . . , k.

We note, however, that

∂2 log p(x; θ)
∂θj′∂θj

=
∂2p(x; θ)
∂θj′∂θj

/p(x; θ) − ψj′(x; θ)ψj(x; θ)
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This implies that

∂2p(x; θ)
∂θj′∂θj

= p(x; θ)[
∂2 log p(x; θ)
∂θj′∂θj

+ ψj′(x; θ)ψj(x; θ)]

So,

0 =
∫
∂2p(x; θ)
∂θj′∂θj

dµ(x) =
∫
p(x; θ)

∂2 log p(x; θ)
∂θj′∂θj

dµ(x) +
∫
p(x; θ)ψj′(x; θ)ψj(x; θ)dµ(x)

This implies that Ij′j(θ) = −Eθ[
∂2 log p(X;θ)

∂θj′∂θj
]. In matrix form, this

says that I(θ) = Eθ[−∂2 log p(X;θ)
∂θ∂θ′ ]. So, Eθ0 [Jn(θ0)] = I(θ0).
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By the weak law of large numbers, we know that

Jn(θ) P→ Eθ0 [−
∂2 log p(X ; θ)

∂θ∂θ′
]

Define I∗0 (θ) = Eθ0 [−∂2 log p(X;θ)
∂θ∂θ′ ]. Note that I∗0 (θ0) = I(θ0).

The WLLN enables us to show that Jn(θ) P→ I∗0 (θ) for all θ ∈ N .
This is pointwise convergence. However, as we will see shortly, this
will not suffice to prove our desired results. We will need something
stronger. We will have to show that Jn(θ) converges uniformly in
probability to I∗0 (θ) for θ ∈ N . The proof we follow the exact same
way as it did when we proved uniform convergence in probability
for consistency.
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We know that ∂2 log p(x;θ)
∂θ∂θ′ is continuous in θ ∈ N . This follows by

assumption iv. By condition vii., we know that
‖∂2 log p(x;θ)

∂θ∂θ′ ‖ ≤ f(x) for θ ∈ N and Eθ0 [f(X)] <∞. By the same
proof of Lemma 8.3, we know that a. I∗0 (θ) is continuous for θ ∈ N
and b. supθ∈N ‖Jn(θ) − I∗0 (θ)‖ P→ 0.

This result is important because it allows us to prove the following
lemma:

Lemma 8.7 If θ∗n(Xn) is a consistent estimator for θ0, then

Jn(θ∗n(Xn)) P→ I(θ0).
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Proof: By the triangle inequality, we know that

‖Jn(θ∗(Xn))−I(θ0)‖ ≤ ‖Jn(θ∗(Xn))−I∗0 (θ∗(Xn))‖+‖I∗0 (θ∗(Xn))−I(θ0)‖

So, it suffices to prove that 1. ‖Jn(θ∗(Xn)) − I∗0 (θ∗(Xn))‖ P→ 0

and 2. ‖I∗0 (θ∗(Xn)) − I(θ0)‖ P→ 0.

Since I∗0 (θ) is a continuous function of θ ∈ N , we know that

I∗0 (θ∗(Xn)) P→ I(θ0). This is because a continuous function of a
consistent estimator converges in probability to the function of the
estimand. So, 2 true.

In order to prove 1, we first note that with arbitrarily large
probability and n sufficiently large, θ∗n(Xn) ∈ N . When this
happens, we have that

‖Jn(θ∗n(Xn)) − I∗0 (θ∗n(Xn))‖ ≤ sup
θ∈N

‖Jn(θ) − I∗0 (θ)‖ P→ 0
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So, we know that Jn(θ∗jn(Xn))
P (θ0)→ I(θ0) for all j. This implies

that J∗
n(Xn)

P (θ0)→ I(θ0).


