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Section 8.3. Efficiency

Suppose we want to estimate a real-valued function of θ, say g(θ),
g(·) : Rk → R. Assume that g has continuous partial derivatives.
Consider estimating g(θ0) by g(θ̂(Xn)), where θ̂(Xn) is the MLE.

Assuming that the 8 regularity conditions hold, we know that√
n(θ̂(Xn) − θ0)

D→ N(0, I−1(θ0)). By the multivariate delta
method, we know that

√
n(g(θ̂(Xn)) − g(θ0))

D→ N(0, a(θ0)′I−1(θ0)a(θ0))

where a(θ0) is the gradient of g(θ) at θ0.
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By the information inequality, we know that among all unbiased
estimators, δ(Xn), of g(θ),

V arθ0 [δ(Xn)] = Eθ0 [(δ(Xn) − g(θ0))2] ≥ a(θ0)′I−1
n (θ0)a(θ0) (1)

where In(θ0) = nI(θ0).

Consider an estimator, T (Xn), of g(θ0) which is asymptotically
normal and asymptotically unbiased, i.e.,

√
n(T (Xn) − g(θ0))

D→ N(0, V (θ0)) (2)

It turns out that under some additional regularity conditions
on T (Xn), we can show that

V (θ0) ≥ a(θ0)′I−1(θ0)a(θ0) (3)
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Definition: A regular estimator T (Xn) of g(θ0) which satisfies (2)
with V (θ0) = a(θ0)′I−1(θ0)a(θ0) is said to be asymptotically
efficient.

If g(θ̂(Xn)) is regular, then we know that it is asymptotically
efficient.

Remarks about Lower Bounds (1) and (3)

• (1) is attained only under exceptional circumstances (i.e.,
usually need completeness), while (3) is obtained under quite
general regularity conditions.

• The UMVUE tends to be unique, while asymptotically efficient
estimators are not. If T (Xn) is asymptotically efficient, then so

is T (Xn) +Rn, provided
√
nRn

P→ 0.

• In (1), the estimator must be unbiased, whereas in (3), the
estimator must be consistent and asymptotically unbiased.



49

• V (θ0) in (3) is an asymptotic variance, whereas (1) refers to
the actual variance of δ(Xn).

For a long time, it was believed that the regularity conditions
needed to make (3) hold involved regularity conditions on the
density p(x; θ). This belief was exploded by Hodges.
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Hodges’ Example of Super-Efficiency

Suppose that Xn = (X1, . . . , Xn) where the Xi’s are i.i.d.
Normal(µ0, 1). We can show that I(µ0) = 1 for all µ0. Consider
the following estimator of µ0,

µ̂(Xn) =

⎧⎨
⎩

X̄n |X̄n| ≥ n−1/4

0 |X̄n| < n−1/4

Hodges showed that:

√
n(µ̂(Xn) − µ0) →D

⎧⎨
⎩

N(0, 1) if µ0 �= 0

0 if µ0 = 0

The latter variance makes the asymptotic distribution of the MLE
inadmissible.
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Remarks about Super-Efficiency

• The problem here is not due to irregularities of the density
function, but due to the partialness of our estimator to µ0 = 0.

• This example shows that no regularity conditions on the
density can prevent an estimator from violating (3). This
possibility can only be avoided by placing restrictions on the
sequence of estimators.

• LeCam (1953) showed that for any sequence of estimators
satisfying (2), the set of points in Θ violating (3) has Lebesgue
measure zero.

• Superefficiency shows that “parametric” models can be useful
and justified when checking them in appropriate ways.
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Regular Estimator

When we first discussed estimators we wanted to rule out partial
estimators, i.e., estimators which favored some values of the
parameters over others. In an asymptotic sense, we may want our
sequence of estimators to be impartial so that we rule out
estimators like the one presented by Hodges. Toward this end, we
may restrict ourselves to regular estimators. A regular sequence of
estimators is one whose asymptotic distribution remains the same
in shrinking neighborhoods of the true parameter value.
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More formally. consider a sequence of estimators {T (Xn)} and a
sequence of parameter values {θn} so that

√
n(θn − θ0) is bounded.

T (Xn) is a regular sequence of estimators if

Pθn [
√
n(T (Xn) − g(θn)) ≤ a]

converges to the same limit as

Pθ0 [
√
n(T (Xn) − g(θ0)) ≤ a]

for all a. For estimators that are regular and satisfy (2), (3) holds.
When we talk about influence functions, we will formally establish
this result.
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Is Hodge’s Estimator Regular?

Suppose that µ0 = 0. We know that the limiting distribution of√
n(µ̂(Xn) − µ0) is a degenerate distribution with point mass at

zero. Consider the sequence µn = τ/
√
n, where τ is some positive

constant. Note that
√
n(µn − µ0) → τ . Now, we can show that

√
n(µ̂(Xn) − µn)

P (µn)→ −τ . To see this, not that

Pµn [
√

n(µ̂(Xn) − µn) = −τ] = Pµn [
√

n(µ̂(Xn) − τ/
√

n) = −τ]

= Pµn [µ̂(Xn) = 0]

= Pµn [|X̄n| < n
−1/4]

= Pµn [−n−1/4 < X̄n < n−1/4]

= Pµn [
√

n(−n−1/4 − µn) <
√

n(X̄n − µn) <
√

n(n−1/4 − µn)]

= Φ(
√

n(n−1/4 − µn)) − Φ(
√

n(−n−1/4 − µn))

= Φ(n
1/4 − τ) − Φ(−n

1/4 − τ)

→ 1
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So, the limiting distribution of
√
n(µ̂(Xn) − µn) is also degenerate,

but with point mass at −τ . This is a different limiting distribution
than that of

√
n(µ̂(Xn) − µ0). Therefore, µ̂(Xn) is not regular.
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Calculating MLE’s via Iterative Algorithms

To find the MLE, we usually set the score equations equal to zero
and solve. The MLE usually satisfies,

n∑
i=1

ψ(Xi; θ̂(Xn)) = 0

When there is no closed form solution, we can use an iterative
method to solve the score equations. At the kth iteration, we have
a proposed solution to the above equation, θ(k). We update the
solution by noting that

0 =
n∑

i=1

ψ(Xi; θ̂(Xn)) =
n∑

i=1

ψ(Xi; θ(k)) − nJ∗
n(Xn)(θ̂(Xn) − θ(k))

where θ∗n falls between θ̂(Xn) and θ(k).
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This implies that

θ̂(Xn) = θ(k) + {nJ∗
n(Xn)}−1

n∑
i=1

ψ(Xi; θ(k))

What should be use for Jn(θ∗n). One proposal is to use Jn(θ(k)), so
that

θ(k+1) = θ(k) + {nJn(θ(k))}−1
n∑

i=1

ψ(Xi; θ(k))

If we have a closed form solution for I(θ), we can replace Jn(θ∗n) by
I(θ(k)), so that

θ(k+1) = θ(k) + {nI(θ(k))}−1
n∑

i=1

ψ(Xi; θ(k))

This latter substitution is called Fisher scoring.

With either substitution, we iterate to convergence.
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Why does this work?

Caution: Be careful to make sure that you have identified the
MLE as opposed to a local maximum or minimum.
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Estimating the Asymptotic Variance

We have already proved under appropriate regularity conditions
that √

n(θ̂(Xn) − θ0)
D→ N(0, I−1(θ0))

In order to use this result for inferential purposes, we need to be
able to approximate the limiting distribution. This means we have
to be able to estimate I(θ0) and I−1(θ0). This follows easily from
the results that be have already derived.. Specifically, we know that

Jn(θ̂(Xn)) P→ I(θ0) ; {Jn(θ̂(Xn))}−1 P→ I−1(θ0)

and
I(θ̂(Xn)) P→ I(θ0) ; {I(θ̂(Xn))}−1 P→ I−1(θ0)
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Testing H0 : f(θ) = f(θ0); Confidence Ellipses for f(θ0)

By the multivariate delta method, we know that

√
n(f(θ̂(Xn)) − f(θ0))

D→ N(0,�f(θ0)I−1(θ0) � f(θ0)′)

This implies that

n(f (θ̂(Xn))−f (θ0))
′{�f (θ0)I

−1(θ0)�f (θ0)
′}−1(f (θ̂(Xn))−f (θ0))

D→ χ2
q
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Note that

n(f(θ̂(Xn))−f(θ0))′{�f(θ̂(Xn))Jn(θ̂(Xn))−1�f(θ̂(Xn))′}−1(f(θ̂(Xn))−f(θ0))

(4)

is equal to

n(f(θ̂(Xn)) − f(θ0))′{�f(θ0)I−1(θ0) � f(θ0)′}−1(f(θ̂(Xn)) − f(θ0)) + (5)
√

n(f(θ̂(Xn)) − f(θ0))′{{�f(θ̂(Xn))Jn(θ̂(Xn))−1 � f(θ̂(Xn))′}−1 − (6)

{�f(θ0)I
−1(θ0) � f(θ0)′}−1}√n(f(θ̂(Xn)) − f(θ0))

(5) converges in distribution to χ2
q and (6) converges in probability

to zero. By Slutsky’s theorem, we know that (4) converges in
distribution to χ2

q. So (4) can be used for testing H0 : f(θ) = f(θ0)
or for forming confidence ellipses (intervals) for f(θ0).
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Many problems can be viewed as using “incomplete” data. For
such problems:

Direct solution of the score equations can be unstable - infeasible.

The EM algorithm (Dempster, Laird, and Rubin, 1977) can greatly
facilitate optimization.


