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Section 8.4. Example

Let {(Ri, Xi) : i = 1, . . . , n} be an i.i.d. sample of n random vectors
(R,X). Here R is a response indicator and X is a covariate. We
assume that

logitP [R = 1|X ] = α+ βX

and assume that X is normally distributed with mean µ and
variance σ2. So, our probability model has four parameters,
θ = (α, β, µ, σ2). Let θ0 = (α0, β0, µ0, σ

2
0) denote the true value of θ.
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a. For a given realization of the data, write out the likelihood
function of θ.

L(θ; x, r) =
n∏

i=1

1
σ
√

2π
exp(− 1

2σ2
(xi − µ)2)

exp(ri(α+ βxi))
1 + exp(α+ βxi)
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b. Find the maximum likelihood estimator of θ, θ̂n (If there exists
a closed form solution, then present it. If not, indicate how a
solution can be found).

To find the MLE, solve the score equations. The log-likelihood for
an individual is

l(θ;x, r) ∝ − log(σ)− 1
2σ2

(x−µ)2 +r(α+βx)− log(1+exp(α+βx))

The score vector for an individual is

ψ(x, r; θ) =

⎡
⎢⎢⎢⎢⎢⎣

∂l(θ;x,r)
∂α

∂l(θ;x,r)
∂β

∂l(θ;x,r)
∂µ

∂l(θ;x,r)
∂σ2

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

r − exp(α+βx)
1+exp(α+βx)

x(r − exp(α+βx)
1+exp(α+βx) )

x−µ
σ2

− 1
2σ2 + (x−µ)2

2σ4

⎤
⎥⎥⎥⎥⎥⎦
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The score equations for the full sample are:

n∑
i=1

ri − exp(α+ βxi)
1 + exp(α+ βxi)

= 0 (1)

n∑
i=1

xi(ri − exp(α+ βxi)
1 + exp(α+ βxi)

) = 0 (2)

n∑
i=1

xi − µ

σ2
= 0 (3)

n∑
i=1

− 1
2σ2

+
(xi − µ)2

2σ4
= 0 (4)

Note that Equations (3) and (4) can be solved explicitly to get
solutions for µ̂ and σ̂2, i.e.,

µ̂ =
1
n

n∑
i=1

xi and σ̂2 =
1
n

n∑
i=1

(xi − µ̂)2
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The solutions for α̂ and β̂ are obtained by solving Equations (1)
and (2). This does not yield simple closed form solutions.
Therefore, we use the Newton-Raphson algorithm. This entails
computing the observed information matrix. Some of these
computations will be needed later so let’s compute the entire
matrix of second partial derivatives. Let pi(α, β) = exp(α+βxi)

1+exp(α+βxi)

and qi(α, β) = 1 − pi(α, β), Now,

nJn(θ) =

⎡
⎣ Jn1(α, β) 0

0 Jn2(µ, σ2)

⎤
⎦

where

Jn1(α, β) =

⎡
⎣

∑n
i=1 pi(α, β)qi(α, β)

∑n
i=1 xipi(α, β)qi(α, β)

∑n
i=1 xipi(α, β)qi(α, β)

∑n
i=1 x

2
i pi(α, β)qi(α, β)

⎤
⎦
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and

Jn2(µ, σ2) =

⎡
⎣

n
σ2

1
σ4

∑n
i=1(xi − µ)

1
σ4

∑n
i=1(xi − µ) − n

2σ4 + 1
σ6

∑n
i=1(xi − µ)2

⎤
⎦

To compute the the solution to (1) and (2), we start with initial
values for α and β, say α(0) and β(0), then update as follows:

�
� α(j+1)

β(j+1)

�
� =

�
� α(j)

β(j)

�
�+{Jn1(α

(j), β(j))}−1·
�

�
�n

i=1(ri − pi(α
(j), β(j))

�n
i=1 xi(ri − pi(α

(j), β(j))

�
�

We iterate until convergence.
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Assume that |α| ≤ K1, |β| ≤ K2, |µ| ≤ K3, and K4 ≤ σ2 ≤ K5,
where K1, . . . , K5 are finite positive quantities. Is the parameter
space, Θ, compact? YES! Assume that θ0 (truth) belongs to the
interior of Θ.

c. Verify all of the regularity conditions that are necessary to show
that the MLE is both consistent and asymptotically normal.

Refer to Section 8c. Condition i) is satisfied by assumption.
Condition ii) is satisfied since log p(x, r; θ) is continuous at each θ
for all −∞ < x <∞ and r = 0, 1. Now, we need to show condition
iii) that | log p(x, r; θ)| ≤ d(x, r) for all θ ∈ Θ and Eθ0 [d(X,R)] <∞.

log p(x, r; θ) = −1

2
log(2π)−log(σ)− 1

2σ2
(x−µ)2+r(α+βx)−log(1+exp(α+βx))

By the triangle inequality, we know that

| log p(x, r; θ)| ≤ 1

2
log(2π)+| log(σ)|+| 1

2σ2
(x−µ)2|+|r(α+βx)|+| log(1+exp(α+βx))|
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Some inequalities that we will need.

|x| ≤ 1 + x2

log(1 + exp(α+ βx)) ≥ 0

log(1 + exp(α+ βx)) ≤ log(1 + exp(|α| + |β||x|))
≤ 1 + log(exp(|α| + |β||x|))
= 1 + |α| + |β||x|
≤ 1 +K1 +K2(1 + x2)

| log(σ)| ≤ 1
2

max(| log(K4)|, | log(K5)|)
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| 1
2σ2

(x− µ)2| ≤ 1
2σ2

x2 +
1
σ2

|µ||x| + µ2

2σ2

≤ x2

2K4
+
K3

K4
(1 + x2) +

K2
3

2K4

|r(α+ βx)| ≤ |α| + |β||x| ≤ K1 +K2(1 + x2)

| log(1 + exp(α+ βx))| ≤ 1 +K1 +K2(1 + x2)

Let

d(x, r) =
1
2

log(2π) +
1
2

max(| log(K4)|, | log(K5)|) +

x2

2K4
+
K3

K4
(1 + x2) +

K2
3

2K4
+K1 +K2(1 + x2) +

1 +K1 +K2(1 + x2)

Now, Eθ0 [X
2] = µ2

0 + σ2
0 <∞. This implies that Eθ0 [d(X,R)] <∞.

For condition iv), we have to show that p(x, r; θ) is
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twice-continuously differentiable and p(x, r; θ) > 0 for θ in a
neighborhood of θ0. This follows simply from the fact that the
density is made up of polynomial and exponentials for which
derivatives exists. The density is clearly positive over the entire
parameter space.
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For condition v), we have to show that ‖∂p(x,r;θ)
∂θ ‖ ≤ e(x, r), where

e(x, r) is integrable. Remember,

p(x, r; θ) =
1

σ
√

2π
exp(− 1

2σ2
(x − µ)2)

exp(r(α + βx))

1 + exp(α + βx)

and

∂p(x, r; θ)

∂θ
=

�
������

1

σ
√

2π
exp(− 1

2σ2 (x − µ)2) r exp(r(α+βx))+(r−1) exp((r+1)(α+βx)

(1+exp(α+βx))2

1

σ
√

2π
exp(− 1

2σ2 (x − µ)2)xr exp(r(α+βx))+x(r−1) exp((r+1)(α+βx)

(1+exp(α+βx))2

1

σ
√

2π
exp(− 1

2σ2 (x − µ)2) exp(r(α+βx))
(1+exp(α+βx))

{x−µ
σ2 }

1

σ
√

2π
exp(− 1

2σ2 (x − µ)2) exp(r(α+βx))
(1+exp(α+βx))

{− 1
2σ2 + (x−µ)2

2σ4 }

�
					


Now,

‖∂p(x, r; θ)
∂θ

‖ ≤ |∂p(x, r; θ)
∂α

|+|∂p(x, r; θ)
∂β

|+|∂p(x, r; θ)
∂µ

|+|∂p(x, r; θ)
∂σ2

|
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We want to bound each of the terms in the sum by a function of x
and r which is integrable.

To do this, note that

1
σ
√

2π
exp(− 1

2σ2
(x− µ)2) ≤ e∗(x)

where

e∗(x) =

���

���

1√
2K4π

−K3 ≤ x ≤ K3

1√
2K4π

exp(− 1
2K5

(x − K3)
2) x > K3

1√
2K4π

exp(− 1
2K5

(x + K3)
2) x < −K3
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Now,

|∂p(x, r; θ)
∂α

| ≤ 2e∗(x) ≡ e1(x)

|∂p(x, r; θ)
∂β

| ≤ 2|x|e∗(x) ≤ 2(1 + x2)e∗(x) ≡ e2(x)

|∂p(x, r; θ)
∂µ

| ≤ e∗(x)(
|x| +K3

K4
) ≤ e∗(x)

1 + x2 +K3

K4
≡ e3(x)

|∂p(x, r; θ)
∂σ2

| ≤ e∗(x)(
1

2K4
+
x2(1 + 2K3) + 2K3 +K2

3

2K2
4

) ≡ e4(x)

We know that ‖∂p(x,r;θ)
∂θ ‖ ≤ e(x) = e1(x) + e2(x) + e3(x) + e4(x).

e(x) is integrable since each ei(x) (i = 1, . . . , 4) is integrable.
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For condition vi), we need to show that
I(θ0) = Eθ0 [ψ(X,R; θ0)ψ(X,R; θ0)′] is non-singular. It would
suffice to show that I(θ0) was positive definite. That is,
a′I(θ0)a > 0 for all a such that ‖a‖ > 0. Alternatively, we can show
that V arθ0 [a

′ψ(X,R; θ0)] > 0.

Now,

a′ψ(X,R; θ0) = a1(R − exp(α0 + β0X)
1 + exp(α0 + β0X)

) +

a2X(R− exp(α0 + β0X)
1 + exp(α0 + β0X)

) +

a3(
X − µ0

σ2
0

) + a4(− 1
2σ2

0

+
(X − µ0)2

2σ4
0

)

V arθ0 [a′ψ(X,R; θ0)] = Eθ0 [V arθ0 [a′ψ(X,R; θ0)|X]]+V arθ0 [Eθ0 [a′ψ(X,R; θ0)|X]]
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V arθ0 [a
′ψ(X,R; θ0)|X ] = (a1 + a2X)2

exp(α0 + β0X)
(1 + exp(α0 + β0X))2

Eθ0 [a
′ψ(X,R; θ0)|X ] = a3(

X − µ0

σ2
0

) + a4(− 1
2σ2

0

+
(X − µ0)2

2σ4
0

)

So,

V arθ0 [a
′ψ(X,R; θ0)] = Eθ0 [(a1 + a2X)2

exp(α0 + β0X)
(1 + exp(α0 + β0X))2

] +

V arθ0 [a3(
X − µ0

σ2
0

) + a4(− 1
2σ2

0

+
(X − µ0)2

2σ4
0

)]

= Eθ0 [(a1 + a2X)2
exp(α0 + β0X)

(1 + exp(α0 + β0X))2
] +

a2
3

σ2
0

+
a2
4

4σ8
0

V arθ0 [(X − µ0)2]

The variance can only equal zero if a1 = a2 = a3 = a4 = 0. So,
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I(θ0) is positive definite.
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Conditions vii) and viii) involve showing that the norm of the
matrix of second derivatives of the log likelihood and likelihood are
bounded by functions of x and r which are integrable. The norm of
a matrix A = [aij ] is equal to (

∑
i,j a

2
ij)

1/2. For each of these
matrices, it is sufficient to show that the absolute value of each of
entries is bounded by an integrable function of x and r. The
bounding techniques are very similar to those used to show
condition v).
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d. Find the asymptotic variance of θ̂n.

The asymptotic variance is found by taking the inverse of the
information matrix.

I(θ0)
−1 =

�
�������

Eθ0 [
exp(α0+β0X)

(1+exp(α0+β0X))2
] Eθ0 [X

exp(α0+β0X)

(1+exp(α0+β0X))2
] 0 0

Eθ0 [X
exp(α0+β0X)

(1+exp(α0+β0X))2
] Eθ0 [X

2 exp(α0+β0X)

(1+exp(α0+β0X))2
] 0 0

0 0 1
σ2
0

0

0 0 0 1
2σ4

0

�
						


−1
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e. Find an estimator for the probability of response for an
individual with a covariate value which falls at the pth quantile of
the covariate distribution. Find the asymptotic variance of this
estimator.

The pth quantile of the covariate distribution is µ+ σΦ−1(p),
where Φ(·) is the c.d.f of a standard Normal distribution. The
probability of response for an individual with this covariate value is

h(θ) =
exp(α+ β(µ+ σΦ−1(p)))

1 + exp(α+ β(µ+ σΦ−1(p)))

Thus, our estimator is

h(θ̂) =
exp(α̂+ β̂(µ̂+

√
σ̂2Φ−1(p)))

1 + exp(α̂+ β̂(µ̂+
√
σ̂2Φ−1(p)))

The asymptotic variance is given by (∂h(θ0)
∂θ )′I−1(θ0)(

∂h(θ0)
∂θ ).
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f. At what quantile of the covariate distribution would we expect
the probability of response to be 0.5? Find an estimator for this
quantile and find its asymptotic variance.

What value of x leads to a conditional response probability of 0.5?
Solving

exp(α+ βx)
1 + exp(α+ βx)

= 0.5

we find that x = −α/β. The associated quantile is
p(θ) = Φ(−α/β−µ

σ ). Thus, our estimator is

p(θ̂) = Φ(
−α̂/β̂ − µ̂√

σ̂2
)

The asymptotic variance of p(θ̂) is given by (∂p(θ0)
∂θ )′I−1(θ0)(

∂p(θ0)
∂θ ).


