
1 The Role of Statistics
in Engineering

CHAPTER OUTLINE

1
LEARNING OBJECTIVES

After careful study of this chapter you should be able to do the following:
1. Identify the role that statistics can play in the engineering problem-solving process
2. Discuss how variability affects the data collected and used for making engineering decisions
3. Explain the difference between enumerative and analytical studies
4. Discuss the different methods that engineers use to collect data
5. Identify the advantages that designed experiments have in comparison to other methods of col-

lecting engineering data
6. Explain the differences between mechanistic models and empirical models
7. Discuss how probability and probability models are used in engineering and science

CD MATERIAL

8. Explain the factorial experimental design.
9. Explain how factors can Interact.

Answers for most odd numbered  exercises are at the end of the book. Answers to exercises whose
numbers are surrounded by a box can be accessed in the e-Text by clicking on the box. Complete
worked solutions to certain exercises are also available in the e-Text. These are indicated in the
Answers to Selected Exercises section by a box around the exercise number. Exercises are also
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2 CHAPTER 1 THE ROLE OF STATISTICS IN ENGINEERING

available for some of the text sections that appear on CD only. These exercises may be found within
the e-Text immediately following the section they accompany.

1-1 THE ENGINEERING METHOD AND STATISTICAL THINKING

An engineer is someone who solves problems of interest to society by the efficient application
of scientific principles. Engineers accomplish this by either refining an existing product or
process or by designing a new product or process that meets customers’needs. The engineering,
or scientific, method is the approach to formulating and solving these problems. The steps in
the engineering method are as follows:

1. Develop a clear and concise description of the problem.

2. Identify, at least tentatively, the important factors that affect this problem or that may
play a role in its solution.

3. Propose a model for the problem, using scientific or engineering knowledge of the
phenomenon being studied. State any limitations or assumptions of the model.

4. Conduct appropriate experiments and collect data to test or validate the tentative
model or conclusions made in steps 2 and 3.

5. Refine the model on the basis of the observed data.

6. Manipulate the model to assist in developing a solution to the problem.

7. Conduct an appropriate experiment to confirm that the proposed solution to the prob-
lem is both effective and efficient.

8. Draw conclusions or make recommendations based on the problem solution.

The steps in the engineering method are shown in Fig. 1-1. Notice that the engineering method
features a strong interplay between the problem, the factors that may influence its solution, a
model of the phenomenon, and experimentation to verify the adequacy of the model and the
proposed solution to the problem. Steps 2–4 in Fig. 1-1 are enclosed in a box, indicating that
several cycles or iterations of these steps may be required to obtain the final solution.
Consequently, engineers must know how to efficiently plan experiments, collect data, analyze
and interpret the data, and understand how the observed data are related to the model they
have proposed for the problem under study.

The field of statistics deals with the collection, presentation, analysis, and use of data to
make decisions, solve problems, and design products and processes. Because many aspects of
engineering practice involve working with data, obviously some knowledge of statistics is
important to any engineer. Specifically, statistical techniques can be a powerful aid in design-
ing new products and systems, improving existing designs, and designing, developing, and
improving production processes.

Figure 1-1 The
engineering method.
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1-1 THE ENGINEERING METHOD AND STATISTICAL THINKING 3

Statistical methods are used to help us describe and understand variability. By variability,
we mean that successive observations of a system or phenomenon do not produce exactly the
same result. We all encounter variability in our everyday lives, and statistical thinking can
give us a useful way to incorporate this variability into our decision-making processes. For
example, consider the gasoline mileage performance of your car. Do you always get exactly the
same mileage performance on every tank of fuel? Of course not—in fact, sometimes the mileage
performance varies considerably. This observed variability in gasoline mileage depends on
many factors, such as the type of driving that has occurred most recently (city versus highway),
the changes in condition of the vehicle over time (which could include factors such as tire
inflation, engine compression, or valve wear), the brand and/or octane number of the gasoline
used, or possibly even the weather conditions that have been recently experienced. These factors
represent potential sources of variability in the system. Statistics gives us a framework for
describing this variability and for learning about which potential sources of variability are the
most important or which have the greatest impact on the gasoline mileage performance.

We also encounter variability in dealing with engineering problems. For example, sup-
pose that an engineer is designing a nylon connector to be used in an automotive engine
application. The engineer is considering establishing the design specification on wall thick-
ness at 3�32 inch but is somewhat uncertain about the effect of this decision on the connector
pull-off force. If the pull-off force is too low, the connector may fail when it is installed in an
engine. Eight prototype units are produced and their pull-off forces measured, resulting in the
following data (in pounds): 12.6, 12.9, 13.4, 12.3, 13.6, 13.5, 12.6, 13.1. As we anticipated,
not all of the prototypes have the same pull-off force. We say that there is variability in the
pull-off force measurements. Because the pull-off force measurements exhibit variability, we
consider the pull-off force to be a random variable. A convenient way to think of a random
variable, say X, that represents a measurement, is by using the model

(1-1)

where � is a constant and � is a random disturbance. The constant remains the same with every
measurement, but small changes in the environment, test equipment, differences in the indi-
vidual parts themselves, and so forth change the value of �. If there were no disturbances, �
would always equal zero and X would always be equal to the constant �. However, this never
happens in the real world, so the actual measurements X exhibit variability. We often need to
describe, quantify and ultimately reduce variability.

Figure 1-2 presents a dot diagram of these data. The dot diagram is a very useful plot for
displaying a small body of data—say, up to about 20 observations. This plot allows us to see eas-
ily two features of the data; the location, or the middle, and the scatter or variability. When the
number of observations is small, it is usually difficult to identify any specific patterns in the vari-
ability, although the dot diagram is a convenient way to see any unusual data features.

The need for statistical thinking arises often in the solution of engineering problems.
Consider the engineer designing the connector. From testing the prototypes, he knows that the
average pull-off force is 13.0 pounds. However, he thinks that this may be too low for the

X � � � �
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Figure 1-2 Dot diagram of the pull-off force
data when wall thickness is 3/32 inch.

12 13 14 15

Pull-off force

3
32

inch

inch

=

1
8

=

Figure 1-3 Dot diagram of pull-off force for two wall
thicknesses.
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4 CHAPTER 1 THE ROLE OF STATISTICS IN ENGINEERING

Figure 1-5 Enumerative versus analytic study.
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intended application, so he decides to consider an alternative design with a greater wall
thickness, 1�8 inch. Eight prototypes of this design are built, and the observed pull-off force
measurements are 12.9, 13.7, 12.8, 13.9, 14.2, 13.2, 13.5, and 13.1. The average is 13.4.
Results for both samples are plotted as dot diagrams in Fig. 1-3, page 3. This display gives
the impression that increasing the wall thickness has led to an increase in pull-off force.
However, there are some obvious questions to ask. For instance, how do we know that an-
other sample of prototypes will not give different results? Is a sample of eight prototypes
adequate to give reliable results? If we use the test results obtained so far to conclude that
increasing the wall thickness increases the strength, what risks are associated with this de-
cision? For example, is it possible that the apparent increase in pull-off force observed in
the thicker prototypes is only due to the inherent variability in the system and that increas-
ing the thickness of the part (and its cost) really has no effect on the pull-off force?

Often, physical laws (such as Ohm’s law and the ideal gas law) are applied to help design
products and processes. We are familiar with this reasoning from general laws to specific
cases. But it is also important to reason from a specific set of measurements to more general
cases to answer the previous questions. This reasoning is from a sample (such as the eight con-
nectors) to a population (such as the connectors that will be sold to customers). The reasoning
is referred to as statistical inference. See Fig. 1-4. Historically, measurements were obtained
from a sample of people and generalized to a population, and the terminology has remained.
Clearly, reasoning based on measurements from some objects to measurements on all objects
can result in errors (called sampling errors). However, if the sample is selected properly, these
risks can be quantified and an appropriate sample size can be determined.

In some cases, the sample is actually selected from a well-defined population. The sam-
ple is a subset of the population. For example, in a study of resistivity a sample of three wafers
might be selected from a production lot of wafers in semiconductor manufacturing. Based on
the resistivity data collected on the three wafers in the sample, we want to draw a conclusion
about the resistivity of all of the wafers in the lot.

In other cases, the population is conceptual (such as with the connectors), but it might be
thought of as future replicates of the objects in the sample. In this situation, the eight proto-
type connectors must be representative, in some sense, of the ones that will be manufactured
in the future. Clearly, this analysis requires some notion of stability as an additional assump-
tion. For example, it might be assumed that the sources of variability in the manufacture of the
prototypes (such as temperature, pressure, and curing time) are the same as those for the con-
nectors that will be manufactured in the future and ultimately sold to customers.

Physical
laws

Types of
reasoning

Product
designs

Population

Statistical inference

Sample

Figure 1-4 Statistical inference is one type of
reasoning.
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1-2 COLLECTING ENGINEERING DATA 5

The wafers-from-lots example is called an enumerative study. A sample is used to make
an inference to the population from which the sample is selected. The connector example is
called an analytic study. A sample is used to make an inference to a conceptual (future)
population. The statistical analyses are usually the same in both cases, but an analytic study
clearly requires an assumption of stability. See Fig. 1-5, on page 4.

1-2 COLLECTING ENGINEERING DATA

1-2.1 Basic Principles

In the previous section, we illustrated some simple methods for summarizing data. In the en-
gineering environment, the data is almost always a sample that has been selected from some
population. Three basic methods of collecting data are

A retrospective study using historical data

An observational study

A designed experiment

An effective data collection procedure can greatly simplify the analysis and lead to improved
understanding of the population or process that is being studied. We now consider some ex-
amples of these data collection methods.

1-2.2 Retrospective Study

Montgomery, Peck, and Vining (2001) describe an acetone-butyl alcohol distillation
column for which concentration of acetone in the distillate or output product stream is an
important variable. Factors that may affect the distillate are the reboil temperature, the con-
densate temperature, and the reflux rate. Production personnel obtain and archive the
following records:

The concentration of acetone in an hourly test sample of output product

The reboil temperature log, which is a plot of the reboil temperature over time

The condenser temperature controller log

The nominal reflux rate each hour

The reflux rate should be held constant for this process. Consequently, production personnel
change this very infrequently.

A retrospective study would use either all or a sample of the historical process data
archived over some period of time. The study objective might be to discover the relationships
among the two temperatures and the reflux rate on the acetone concentration in the output
product stream. However, this type of study presents some problems:

1. We may not be able to see the relationship between the reflux rate and acetone con-
centration, because the reflux rate didn’t change much over the historical period.

2. The archived data on the two temperatures (which are recorded almost continu-
ously) do not correspond perfectly to the acetone concentration measurements
(which are made hourly). It may not be obvious how to construct an approximate
correspondence.
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6 CHAPTER 1 THE ROLE OF STATISTICS IN ENGINEERING

3. Production maintains the two temperatures as closely as possible to desired targets or
set points. Because the temperatures change so little, it may be difficult to assess their
real impact on acetone concentration.

4. Within the narrow ranges that they do vary, the condensate temperature tends to in-
crease with the reboil temperature. Consequently, the effects of these two process
variables on acetone concentration may be difficult to separate.

As you can see, a retrospective study may involve a lot of data, but that data may contain
relatively little useful information about the problem. Furthermore, some of the relevant
data may be missing, there may be transcription or recording errors resulting in outliers
(or unusual values), or data on other important factors may not have been collected and
archived. In the distillation column, for example, the specific concentrations of butyl alco-
hol and acetone in the input feed stream are a very important factor, but they are not
archived because the concentrations are too hard to obtain on a routine basis. As a result of
these types of issues, statistical analysis of historical data sometimes identify interesting
phenomena, but solid and reliable explanations of these phenomena are often difficult to
obtain.

1-2.3 Observational Study

In an observational study, the engineer observes the process or population, disturbing it as lit-
tle as possible, and records the quantities of interest. Because these studies are usually con-
ducted for a relatively short time period, sometimes variables that are not routinely measured
can be included. In the distillation column, the engineer would design a form to record the two
temperatures and the reflux rate when acetone concentration measurements are made. It may
even be possible to measure the input feed stream concentrations so that the impact of this fac-
tor could be studied. Generally, an observational study tends to solve problems 1 and 2 above
and goes a long way toward obtaining accurate and reliable data. However, observational
studies may not help resolve problems 3 and 4.

1-2.4 Designed Experiments

In a designed experiment the engineer makes deliberate or purposeful changes in the control-
lable variables of the system or process, observes the resulting system output data, and then
makes an inference or decision about which variables are responsible for the observed changes
in output performance. The nylon connector example in Section 1-1 illustrates a designed ex-
periment; that is, a deliberate change was made in the wall thickness of the connector with the
objective of discovering whether or not a greater pull-off force could be obtained. Designed
experiments play a very important role in engineering design and development and in the
improvement of manufacturing processes. Generally, when products and processes are designed
and developed with designed experiments, they enjoy better performance, higher reliability, and
lower overall costs. Designed experiments also play a crucial role in reducing the lead time for
engineering design and development activities.

For example, consider the problem involving the choice of wall thickness for the
nylon connector. This is a simple illustration of a designed experiment. The engineer chose
two wall thicknesses for the connector and performed a series of tests to obtain pull-off
force measurements at each wall thickness. In this simple comparative experiment, the

c01.qxd  5/9/02  1:28 PM  Page 6 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 12 FIN L:



engineer is interested in determining if there is any difference between the 3�32- and 
1�8-inch designs. An approach that could be used in analyzing the data from this experi-
ment is to compare the mean pull-off force for the 3�32-inch design to the mean pull-off
force for the 1�8-inch design using statistical hypothesis testing, which is discussed in
detail in Chapters 9 and 10. Generally, a hypothesis is a statement about some aspect of the
system in which we are interested. For example, the engineer might want to know if the
mean pull-off force of a 3�32-inch design exceeds the typical maximum load expected to
be encountered in this application, say 12.75 pounds. Thus, we would be interested in test-
ing the hypothesis that the mean strength exceeds 12.75 pounds. This is called a single-
sample hypothesis testing problem. It is also an example of an analytic study. Chapter 9
presents techniques for this type of problem. Alternatively, the engineer might be inter-
ested in testing the hypothesis that increasing the wall thickness from 3�32- to 1�8-inch
results in an increase in mean pull-off force. Clearly, this is an analytic study; it is also an
example of a two-sample hypothesis testing problem. Two-sample hypothesis testing
problems are discussed in Chapter 10.

Designed experiments are a very powerful approach to studying complex systems, such
as the distillation column. This process has three factors, the two temperatures and the reflux
rate, and we want to investigate the effect of these three factors on output acetone concentra-
tion. A good experimental design for this problem must ensure that we can separate the effects
of all three factors on the acetone concentration. The specified values of the three factors used
in the experiment are called factor levels. Typically, we use a small number of levels for each
factor, such as two or three. For the distillation column problem, suppose we use a “high,’’ and
“low,’’ level (denoted +1 and �1, respectively) for each of the factors. We thus would use two
levels for each of the three factors. A very reasonable experiment design strategy uses every
possible combination of the factor levels to form a basic experiment with eight different set-
tings for the process. This type of experiment is called a factorial experiment. Table 1-1 pres-
ents this experimental design.

Figure 1-6, on page 8, illustrates that this design forms a cube in terms of these high and
low levels. With each setting of the process conditions, we allow the column to reach equilib-
rium, take a sample of the product stream, and determine the acetone concentration. We then
can draw specific inferences about the effect of these factors. Such an approach allows us to
proactively study a population or process. Designed experiments play a very important role in
engineering and science. Chapters 13 and 14 discuss many of the important principles and
techniques of experimental design.

1-2 COLLECTING ENGINEERING DATA 7

Table 1-1 The Designed Experiment (Factorial Design) for the 
Distillation Column

Reboil Temp. Condensate Temp. Reflux Rate

�1 �1 �1
�1 �1 �1
�1 �1 �1
�1 �1 �1
�1 �1 �1
�1 �1 �1
�1 �1 �1
�1 �1 �1
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8 CHAPTER 1 THE ROLE OF STATISTICS IN ENGINEERING

1-2.5 A Factorial Experiment for the Connector Pull-off 
Force Problem (CD Only)

1-2.6 Observing Processes Over Time

Often data are collected over time. In this case, it is usually very helpful to plot the data ver-
sus time in a time series plot. Phenomena that might affect the system or process often be-
come more visible in a time-oriented plot and the concept of stability can be better judged.

Figure 1-7 is a dot diagram of acetone concentration readings taken hourly from the
distillation column described in Section 1-2.2. The large variation displayed on the dot
diagram indicates a lot of variability in the concentration, but the chart does not help explain
the reason for the variation. The time series plot is shown in Figure 1-8, on page 9. A shift
in the process mean level is visible in the plot and an estimate of the time of the shift can be
obtained.

W. Edwards Deming, a very influential industrial statistician, stressed that it is important
to understand the nature of variability in processes and systems over time. He conducted an
experiment in which he attempted to drop marbles as close as possible to a target on a table.
He used a funnel mounted on a ring stand and the marbles were dropped into the funnel. See
Fig. 1-9. The funnel was aligned as closely as possible with the center of the target. He then
used two different strategies to operate the process. (1) He never moved the funnel. He just
dropped one marble after another and recorded the distance from the target. (2) He dropped
the first marble and recorded its location relative to the target. He then moved the funnel an
equal and opposite distance in an attempt to compensate for the error. He continued to make
this type of adjustment after each marble was dropped.

After both strategies were completed, he noticed that the variability of the distance
from the target for strategy 2 was approximately 2 times larger than for strategy 1. The ad-
justments to the funnel increased the deviations from the target. The explanation is that the
error (the deviation of the marble’s position from the target) for one marble provides no
information about the error that will occur for the next marble. Consequently, adjustments
to the funnel do not decrease future errors. Instead, they tend to move the funnel farther
from the target.

This interesting experiment points out that adjustments to a process based on random dis-
turbances can actually increase the variation of the process. This is referred to as overcontrol
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1-2 COLLECTING ENGINEERING DATA 9
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Figure 1-8 A time series plot of concentration provides
more information than the dot diagram.

Target Marbles

Figure 1-9 Deming’s funnel experiment.

or tampering. Adjustments should be applied only to compensate for a nonrandom shift in
the process—then they can help. A computer simulation can be used to demonstrate the les-
sons of the funnel experiment. Figure 1-10 displays a time plot of 100 measurements
(denoted as y) from a process in which only random disturbances are present. The target
value for the process is 10 units. The figure displays the data with and without adjustments
that are applied to the process mean in an attempt to produce data closer to target. Each
adjustment is equal and opposite to the deviation of the previous measurement from target.
For example, when the measurement is 11 (one unit above target), the mean is reduced by
one unit before the next measurement is generated. The overcontrol has increased the devia-
tions from the target.

Figure 1-11 displays the data without adjustment from Fig. 1-10, except that the measure-
ments after observation number 50 are increased by two units to simulate the effect of a shift
in the mean of the process. When there is a true shift in the mean of a process, an adjustment
can be useful. Figure 1-11 also displays the data obtained when one adjustment (a decrease of
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Figure 1-10 Adjust-
ments applied to
random disturbances
overcontrol the process
and increase the devia-
tions from the target.
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10 CHAPTER 1 THE ROLE OF STATISTICS IN ENGINEERING
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two units) is applied to the mean after the shift is detected (at observation number 57). Note
that this adjustment decreases the deviations from target.

The question of when to apply adjustments (and by what amounts) begins with an under-
standing of the types of variation that affect a process. A control chart is an invaluable way
to examine the variability in time-oriented data. Figure 1-12 presents a control chart for the
concentration data from Fig. 1-8. The center line on the control chart is just the average of the
concentration measurements for the first 20 samples ( ) when the process is sta-
ble. The upper control limit and the lower control limit are a pair of statistically derived lim-
its that reflect the inherent or natural variability in the process. These limits are located three
standard deviations of the concentration values above and below the center line. If the process
is operating as it should, without any external sources of variability present in the system, the
concentration measurements should fluctuate randomly around the center line, and almost all
of them should fall between the control limits.

In the control chart of Fig. 1-12, the visual frame of reference provided by the center line
and the control limits indicates that some upset or disturbance has affected the process around
sample 20 because all of the following observations are below the center line and two of them

x � 91.5 g�l
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1-3 MECHANISTIC AND EMPIRICAL MODELS 11

actually fall below the lower control limit. This is a very strong signal that corrective action is
required in this process. If we can find and eliminate the underlying cause of this upset, we can
improve process performance considerably.

Control charts are a very important application of statistics for monitoring, controlling,
and improving a process. The branch of statistics that makes use of control charts is called sta-
tistical process control, or SPC. We will discuss SPC and control charts in Chapter 16.

1-3 MECHANISTIC AND EMPIRICAL MODELS

Models play an important role in the analysis of nearly all engineering problems. Much of the
formal education of engineers involves learning about the models relevant to specific fields
and the techniques for applying these models in problem formulation and solution. As a sim-
ple example, suppose we are measuring the flow of current in a thin copper wire. Our model
for this phenomenon might be Ohm’s law:

or

(1-2)

We call this type of model a mechanistic model because it is built from our underlying
knowledge of the basic physical mechanism that relates these variables. However, if we
performed this measurement process more than once, perhaps at different times, or even on
different days, the observed current could differ slightly because of small changes or varia-
tions in factors that are not completely controlled, such as changes in ambient temperature,
fluctuations in performance of the gauge, small impurities present at different locations in the
wire, and drifts in the voltage source. Consequently, a more realistic model of the observed
current might be

(1-3)

where � is a term added to the model to account for the fact that the observed values of
current flow do not perfectly conform to the mechanistic model. We can think of � as a
term that includes the effects of all of the unmodeled sources of variability that affect this
system.

Sometimes engineers work with problems for which there is no simple or well-
understood mechanistic model that explains the phenomenon. For instance, suppose we are
interested in the number average molecular weight (Mn) of a polymer. Now we know that Mn

is related to the viscosity of the material (V ), and it also depends on the amount of catalyst (C )
and the temperature (T ) in the polymerization reactor when the material is manufactured. The
relationship between Mn and these variables is

(1-4)

say, where the form of the function f is unknown. Perhaps a working model could be devel-
oped from a first-order Taylor series expansion, which would produce a model of the form

(1-5)Mn � �0 � �1V � �2C � �3T

Mn � f 1V, C, T 2

I � E�R � �

I � E�R

Current � voltage�resistance
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12 CHAPTER 1 THE ROLE OF STATISTICS IN ENGINEERING

Table 1-2 Wire Bond Pull Strength Data

Observation Pull Strength Wire Length Die Height
Number y x1 x2

1 9.95 2 50
2 24.45 8 110
3 31.75 11 120
4 35.00 10 550
5 25.02 8 295
6 16.86 4 200
7 14.38 2 375
8 9.60 2 52
9 24.35 9 100

10 27.50 8 300
11 17.08 4 412
12 37.00 11 400
13 41.95 12 500
14 11.66 2 360
15 21.65 4 205
16 17.89 4 400
17 69.00 20 600
18 10.30 1 585
19 34.93 10 540
20 46.59 15 250
21 44.88 15 290
22 54.12 16 510
23 56.63 17 590
24 22.13 6 100
25 21.15 5 400

where the �’s are unknown parameters. Now just as in Ohm’s law, this model will not exactly
describe the phenomenon, so we should account for the other sources of variability that may
affect the molecular weight by adding another term to the model; therefore

(1-6)

is the model that we will use to relate molecular weight to the other three variables. This type of
model is called an empirical model; that is, it uses our engineering and scientific knowledge of
the phenomenon, but it is not directly developed from our theoretical or first-principles under-
standing of the underlying mechanism.

To illustrate these ideas with a specific example, consider the data in Table 1-2. This table
contains data on three variables that were collected in an observational study in a semicon-
ductor manufacturing plant. In this plant, the finished semiconductor is wire bonded to a
frame. The variables reported are pull strength (a measure of the amount of force required to
break the bond), the wire length, and the height of the die. We would like to find a model
relating pull strength to wire length and die height. Unfortunately, there is no physical mech-
anism that we can easily apply here, so it doesn’t seem likely that a mechanistic modeling
approach will be successful.

Mn � �0 � �1V � �2C � �3T � �
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Figure 1-13 Three-
dimensional plot of
the wire and pull
strength data.

Figure 1-13 presents a three-dimensional plot of all 25 observations on pull strength, wire
length, and die height. From examination of this plot, we see that pull strength increases as both
wire length and die height increase. Furthermore, it seems reasonable to think that a model such as

would be appropriate as an empirical model for this relationship. In general, this type of em-
pirical model is called a regression model. In Chapters 11 and 12 we show how to build
these models and test their adequacy as approximating functions. We will use a method for
estimating the parameters in regression models, called the method of least squares, that
traces its origins to work by Karl Gauss. Essentially, this method chooses the parameters in
the empirical model (the �’s) to minimize the sum of the squared distances between each
data point and the plane represented by the model equation. Applying this technique to the
data in Table 1-2 results in

(1-7)

where the “hat,” or circumflex, over pull strength indicates that this is an estimated or pre-
dicted quantity.

Figure 1-14 is a plot of the predicted values of pull strength versus wire length and die
height obtained from Equation 1-7. Notice that the predicted values lie on a plane above the
wire length–die height space. From the plot of the data in Fig. 1-13, this model does not ap-
pear unreasonable. The empirical model in Equation 1-7 could be used to predict values of
pull strength for various combinations of wire length and die height that are of interest.
Essentially, the empirical model could be used by an engineer in exactly the same way that
a mechanistic model can be used.

Pull strength � 2.26 � 2.741wire length2 � 0.01251die height2

Pull strength � �0 � �11wire length2 � �21die height2 � �
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14 CHAPTER 1 THE ROLE OF STATISTICS IN ENGINEERING

1-4 PROBABILITY AND PROBABILITY MODELS

In Section 1-1, it was mentioned that decisions often need to be based on measurements from
only a subset of objects selected in a sample. This process of reasoning from a sample of
objects to conclusions for a population of objects was referred to as statistical inference. A
sample of three wafers selected from a larger production lot of wafers in semiconductor man-
ufacturing was an example mentioned. To make good decisions, an analysis of how well a
sample represents a population is clearly necessary. If the lot contains defective wafers, how
well will the sample detect this? How can we quantify the criterion to “detect well”? Basically,
how can we quantify the risks of decisions based on samples? Furthermore, how should sam-
ples be selected to provide good decisions—ones with acceptable risks? Probability models
help quantify the risks involved in statistical inference, that is, the risks involved in decisions
made every day.

More details are useful to describe the role of probability models. Suppose a production
lot contains 25 wafers. If all the wafers are defective or all are good, clearly any sample will
generate all defective or all good wafers, respectively. However, suppose only one wafer in
the lot is defective. Then a sample might or might not detect (include) the wafer. A probabil-
ity model, along with a method to select the sample, can be used to quantify the risks that the
defective wafer is or is not detected. Based on this analysis, the size of the sample might be
increased (or decreased). The risk here can be interpreted as follows. Suppose a series of lots,
each with exactly one defective wafer, are sampled. The details of the method used to select
the sample are postponed until randomness is discussed in the next chapter. Nevertheless,
assume that the same size sample (such as three wafers) is selected in the same manner from
each lot. The proportion of the lots in which the defective wafer is included in the sample or,
more specifically, the limit of this proportion as the number of lots in the series tends to infin-
ity, is interpreted as the probability that the defective wafer is detected.

A probability model is used to calculate this proportion under reasonable assumptions for
the manner in which the sample is selected. This is fortunate because we do not want to at-
tempt to sample from an infinite series of lots. Problems of this type are worked in Chapters 2
and 3. More importantly, this probability provides valuable, quantitative information regard-
ing any decision about lot quality based on the sample.

Recall from Section 1-1 that a population might be conceptual, as in an analytic study that
applies statistical inference to future production based on the data from current production.
When populations are extended in this manner, the role of statistical inference and the associ-
ated probability models becomes even more important.

In the previous example, each wafer in the sample was only classified as defective or not.
Instead, a continuous measurement might be obtained from each wafer. In Section 1-2.6, con-
centration measurements were taken at periodic intervals from a production process. Figure 1-7
shows that variability is present in the measurements, and there might be concern that the
process has moved from the target setting for concentration. Similar to the defective wafer,
one might want to quantify our ability to detect a process change based on the sample data.
Control limits were mentioned in Section 1-2.6 as decision rules for whether or not to adjust
a process. The probability that a particular process change is detected can be calculated with
a probability model for concentration measurements. Models for continous measurements are
developed based on plausible assumptions for the data and a result known as the central limit
theorem, and the associated normal distribution is a particularly valuable probability model
for statistical inference. Of course, a check of assumptions is important. These types of prob-
ability models are discussed in Chapter 4. The objective is still to quantify the risks inherent
in the inference made from the sample data.
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Throughout Chapters 6 through 15, decisions are based statistical inference from sample
data. Continuous probability models, specifically the normal distribution, are used extensively
to quantify the risks in these decisions and to evaluate ways to collect the data and how large
a sample should be selected.
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1-2.5 A Factorial Experiment for the Connector Pull-off Force Problem
(CD only)

Much of what we know in the engineering and physical-chemical sciences is developed
through testing or experimentation. Often engineers work in problem areas in which no
scientific or engineering theory is directly or completely applicable, so experimentation
and observation of the resulting data constitute the only way that the problem can be
solved. Even when there is a good underlying scientific theory that we may rely on to
explain the phenomena of interest, it is almost always necessary to conduct tests or exper-
iments to confirm that the theory is indeed operative in the situation or environment in
which it is being applied. We have observed that statistical thinking and statistical methods
play an important role in planning, conducting, and analyzing the data from engineering
experiments.

To further illustrate the factorial design concept introduced in Section 1-2.4, suppose that
in the connector wall thickness example, there are two additional factors of interest, time and
temperature. The cure times of interest are 1 and 24 hours and the temperature levels are 70°F
and 100°F. Now since all three factors have two levels, a factorial experiment would consist
of the eight test combinations shown at the corners of the cube in Fig. S1-1. Two trials, or
replicates, would be performed at each corner, resulting in a 16-run factorial experiment. The
observed values of pull-off force are shown in parentheses at the cube corners in Fig. S1-1.
Notice that this experiment uses eight 3�32-inch prototypes and eight 1�8-inch prototypes, the
same number used in the simple comparative study in Section 1-1, but we are now investigat-
ing three factors. Generally, factorial experiments are the most efficient way to study the joint
effects of several factors.

Some very interesting tentative conclusions can be drawn from this experiment. First,
compare the average pull-off force of the eight 3�32-inch prototypes with the average pull-off
force of the eight 1�8-inch prototypes (these are the averages of the eight runs on the left face
and right face of the cube in Fig. S1-1, respectively), or 14.1 � 13.45 � 0.65. Thus, increas-
ing the wall thickness from 3�32 to 1�8-inch increases the average pull-off force by 0.65
pounds. Next, to measure the effect of increasing the cure time, compare the average of the
eight runs in the back face of the cube (where time � 24 hours) with the average of the eight
runs in the front face (where time � 1 hour), or 14.275 � 13.275 � 1. The effect of increas-
ing the cure time from 1 to 24 hours is to increase the average pull-off force by 1 pound; that
is, cure time apparently has an effect that is larger than the effect of increasing the wall

1-1

Figure S1-1 The
factorial experiment
for the connector wall
thickness problem.
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1-2

thickness. The cure temperature effect can be evaluated by comparing the average of the eight
runs in the top of the cube (where temperature � 100°F) with the average of the eight runs in
the bottom (where temperature � 70°F), or 14.125 � 13.425 � 0.7. Thus, the effect of in-
creasing the cure temperature is to increase the average pull-off force by 0.7 pounds. Thus, if
the engineer’s objective is to design a connector with high pull-off force, there are apparently
several alternatives, such as increasing the wall thickness and using the “standard’’ curing
conditions of 1 hour and 70°F or using the original 3�32-inch wall thickness but specifying a
longer cure time and higher cure temperature.

There is an interesting relationship between cure time and cure temperature that can be
seen by examination of the graph in Fig. S1-2. This graph was constructed by calculating the
average pull-off force at the four different combinations of time and temperature, plotting
these averages versus time and then connecting the points representing the two temperature
levels with straight lines. The slope of each of these straight lines represents the effect of cure
time on pull-off force. Notice that the slopes of these two lines do not appear to be the same,
indicating that the cure time effect is different at the two values of cure temperature. This is an
example of an interaction between two factors. The interpretation of this interaction is very
straightforward; if the standard cure time (1 hour) is used, cure temperature has little effect,
but if the longer cure time (24 hours) is used, increasing the cure temperature has a large effect
on average pull-off force. Interactions occur often in physical and chemical systems, and
factorial experiments are the only way to investigate their effects. In fact, if interactions are
present and the factorial experimental strategy is not used, incorrect or misleading results may
be obtained.

We can easily extend the factorial strategy to more factors. Suppose that the engineer
wants to consider a fourth factor, type of adhesive. There are two types: the standard
adhesive and a new competitor. Figure S1-3 illustrates how all four factors, wall thickness,
cure time, cure temperature, and type of adhesive, could be investigated in a factorial
design. Since all four factors are still at two levels, the experimental design can still be
represented geometrically as a cube (actually, it’s a hypercube). Notice that as in any fac-
torial design, all possible combinations of the four factors are tested. The experiment re-
quires 16 trials.

Figure S1-2 The two-factor interaction between cure time and cure temperature.
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Generally, if there are k factors and they each have two levels, a factorial experimental
design will require 2k runs. For example, with k � 4, the 24 design in Fig. S1-3 requires 16
tests. Clearly, as the number of factors increases, the number of trials required in a factorial
experiment increases rapidly; for instance, eight factors each at two levels would require
256 trials. This quickly becomes unfeasible from the viewpoint of time and other resources.
Fortunately, when there are four to five or more factors, it is usually unnecessary to test all
possible combinations of factor levels. A fractional factorial experiment is a variation of
the basic factorial arrangement in which only a subset of the factor combinations are actu-
ally tested. Figure S1-4 shows a fractional factorial experimental design for the four-factor
version of the connector experiment. The circled test combinations in this figure are the
only test combinations that need to be run. This experimental design requires only 8 runs in-
stead of the original 16; consequently it would be called a one-half fraction. This is an ex-
cellent experimental design in which to study all four factors. It will provide good informa-
tion about the individual effects of the four factors and some information about how these
factors interact.

Factorial and fractional factorial experiments are used extensively by engineers and sci-
entists in industrial research and development, where new technology, products, and
processes are designed and developed and where existing products and processes are im-
proved. Since so much engineering work involves testing and experimentation, it is essential
that all engineers understand the basic principles of planning efficient and effective
experiments. We discuss these principles in Chapter 13. Chapter 14 concentrates on the facto-
rial and fractional factorials that we have introduced here.

Figure S1-3 A four-factorial experiment for the connector wall thick-
ness problem.

Figure S1-4 A fractional factorial experiment for the connector wall
thickness problem.
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