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Chapter 8

Bootstrap and Jackknife Estimation
of Sampling Distributions

1 A General view of the bootstrap

We begin with a general approach to bootstrap methods. The goal is to formulate the ideas in a
context which is free of particular model assumptions.

Suppose that the data X ∼ Pθ ∈ P = {Pθ : θ ∈ Θ}. The parameter space Θ is allowed to be
very general; it could be a subset of Rk (in which case the model P is a parametric model), or it
could be the distributions of all i.i.d. sequences on some measurable space (X ,A) (in which case
the model P is the “nonparametric i.i.d.” model).

Suppose that we have an estimator θ̂ of θ ∈ Θ, and thereby an estimator Pθ̂ of Pθ. Consider
estimation of:

A. The distribution of θ̂: e.g. Pθ(θ̂ ∈ A) = Pθ(θ̂(X) ∈ A) for a measurable subset A of Θ;

B. If Θ ⊂ Rk, V arθ(aT θ̂(X)) for a fixed vector a ∈ Rk.

Natural (ideal) bootstrap estimators of these parameters are provided by:

A′. Pθ̂(θ̂(X
∗) ∈ A);

B′. V arθ̂(a
T θ̂(X∗)).

While these ideal bootstrap estimators are often difficult to compute exactly, we can often obtain
Monte-Carlo estimates thereof by sampling fromm Pθ̂ : let X∗1, . . . , X

∗
B be i.i.d. with common

distribution Pθ̂, and calculate θ̂(X∗j ) for j = 1, . . . , B. Then Monte-Carlo approximations (or
implementations) of the bootstrap estimators in A’ and B’ are given by

A′′. B−1
∑B

j=1 1{θ̂(X∗j ) ∈ A};

B′′. B−1
∑B

j=1(aT θ̂(X∗j )−B−1
∑B

j=1 a
T θ̂(X∗j ))

2.

If P is a parametric model, the above approach yields a parametric bootstrap. If P is a
nonparametric model, then this yields a nonparametric bootstrap. In the following section, we try
to make these ideas more concrete first in the context of X = (X1, . . . , Xn) i.i.d. F or P with P
nonparametric so that Pθ = F ×· · ·×F and Pθ̂ = Fn×· · ·×Fn. Or, if the basic underlying sample
space for each Xi is not R, Pθ = P × · · · × P and Pθ̂ = Pn × · · · × Pn.
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2 Bootstrap Methods

We begin with a discussion of Efron’s nonparametric bootstrap; we will then discuss some of the
many alternatives.

Efron’s nonparametric bootstrap

Suppose that T (F ) is some (real-valued) functional of F . If X1, . . . , Xn are i.i.d. with dis-
tribution function F , then we estimate T (F ) by T (Fn) ≡ Tn where Fn is the empirical d.f.
Fn ≡ n−1

∑n
i=1 1{Xi ≤ x}. More generally, if T (P ) is some functional of P and X1, . . . , Xn

are i.i.d. P , then a natural estimator of T (P ) is just T (Pn) where Pn is the empirical measure
Pn = n−1

∑n
i=1 δXi .

Consider estimation of:

A. bn(F ) ≡ n{EF (Tn)− T (F )}.

B. nσ2
n(F ) ≡ nV arF (Tn).

C. κ3,n(F ) ≡ EF [Tn − EF (Tn)]3/σ3
n(F ).

D. Hn(x, F ) ≡ PF (
√
n(Tn − T (F )) ≤ x).

E. Kn(x, F ) ≡ PF (
√
n‖Fn − F‖∞ ≤ x).

F. Ln(x, P ) ≡ PrP (
√
n‖Pn − P‖F ≤ x) where F is a class of functions for which the central limit

theorem holds uniformly over F (i.e. a Donsker class).

The (ideal) nonparametric bootstrap estimates of these quantities are obtained simply via the
substitution principle: if F (or P ) is unknown, estimate it by the empirical distribution function
Fn (or the empirical measure Pn). This yields the following nonparametric bootstrap estimates in
examples A - F:

A′. bn(Fn) ≡ n{EFn(Tn)− T (Fn)}.

B′. nσ2
n(Fn) ≡ nV arFn(Tn).

C′. κ3,n(Fn) ≡ EFn [Tn − EFn(Tn)]3/σ3
n(Fn).

D′. Hn(x,Fn) ≡ PFn(
√
n(Tn − T (Fn)) ≤ x).

E′. Kn(x,Fn) ≡ PFn(
√
n‖F∗n − Fn‖∞ ≤ x).

F′. Ln(x,Pn) ≡ PrPn(
√
n‖P∗n − Pn‖F ≤ x) where F is a class of functions for which the central

limit theorem holds uniformly over F (i.e. a Donsker class).

Because we usually lack closed - form expressions for the ideal bootstrap estimators in A′ - F′,
evaluation of A′ - F′ is usually indirect. Since the empirical d.f. Fn is discrete (with all its mass
at the data), we could, in principle enumerate all possible samples of size n from Fn (or Pn) with
replacement. If n is large, this is a large number, however: nn. [Problem: show that the number
of distinct bootstrap samples is

(
2n−1
n

)
.]

On the other hand, Monte-Carlo approximations to A′ − F ′ are easy: let

(X∗j1, . . . , X
∗
jn) j = 1, . . . , B
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be B independent samples of size n drawn with replacement from Fn (or Pn); let

F∗j,n(x) ≡ n−1
n∑
i=1

1[X∗
j,i≤x]

be the empirical d.f. of the j−th sample, and let

T ∗j,n ≡ T (F∗j,n), j = 1, . . . , B.

Then approximations of A′ − F ′ are given by:

A′′. b∗n,B ≡ n
{

1
B

∑B
j=1 T

∗
j,n − Tn

}
.

B′′. nσ∗2n,B ≡ n
1
B

∑B
j=1(T ∗j,n − T ∗n)2.

C′′. κ∗3,n,B ≡
1
B

∑B
j=1(T ∗j,n − T ∗n)3/σ∗3n,B.

D′′. H∗n,B(x) ≡ 1
B

∑B
j=1 1{

√
n(T ∗j,n − Tn) ≤ x}.

E′′. K∗n,B(x) ≡ 1
B

∑B
j=1 1{

√
n‖F∗j,n − Fn‖∞ ≤ x}.

F′′. L∗n,B(x) ≡ 1
B

∑B
j=1 1{

√
n‖P∗j,n − Pn‖F ≤ x}.

For fixed sample size n and data Fn, it follows from the Glivenko - Cantelli theorem (applied to
the bootstrap sampling) that

sup
x
|H∗n,B(x)−Hn(x,Fn)| →a.s. 0 as B →∞,

and, by Donsker’s theorem,
√
B(H∗n,B(x)−Hn(x,Fn))⇒ U∗∗(Hn(x,Fn)) as B →∞.

Moreover, by the Dvoretzky, Kiefer, Wolfowitz (1956) inequality ( P (‖Un‖ ≥ λ) ≤ 2 exp(−2λ2) for
all n and λ > 0 where the constant 2 before the exponential comes via Massart (1990)),

P (sup
x
|H∗n,B(x)−Hn(x,Fn)| ≥ ε) ≤ 2 exp(−2Bε2).

For a given ε > 0 we can make this probability as small as we please by choosing B (over which
we have complete control given sufficient computing power) sufficiently large. Since the deviations
of H∗n,B from Hn(x,Fn) are so well -understood and controlled, much of our discussion below will
focus on the differences between Hn(x,Fn) and Hn(x, F ).

Sometimes it is possible to compute the distribution of the bootstrap estimator explicitly with
out resort to Monte-Carlo; here is an example of this kind.

Example 2.1 (The distribution of the bootstrap estimator of the median). Suppose that T (F ) =
F−1(1/2). Then

T (Fn) = F−1
n (1/2) = X([n+1]/2)

and

T (F∗n) = F∗−1
n (1/2) = X∗([n+1]/2).
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Let m = [n+ 1]/2, and let Mj ≡ #{X∗i = Xj(ω) : i = 1, . . . , n}, j = 1, . . . , n so that

M ≡ (M1, . . . ,Mn) ∼ Multn(n, (1/n, . . . , 1/n)).

Now [X∗(m) > X(k)(ω)] = [nF∗n(X(k)(ω)) ≤ m− 1], and hence

P (T (F∗n) = X∗(m) > X(k)(ω)|Fn) = P (nF∗n(X(k)(ω)) ≤ m− 1|Fn)

= P (Binomial(n, k/n) ≤ m− 1)

=
m−1∑
j=0

(
n

j

)
(k/n)j(1− k/n)n−j ,

while

P (Tn > x) = P (X(m) > x) = P (nFn(x) < m)

=
m−1∑
j=0

(
n

j

)
F (x)j(1− F (x))n−j .

This implies that

P (T (F∗n) = X(k)(ω)|Fn)

=

m−1∑
j=0

{(
n

j

)(
k − 1

n

)j (
1− k − 1

n

)n−j
−
(
n

j

)(
k

n

)j (
1− k

n

)n−j}

for k = 1, . . . , n.

Example 2.2 (Standard deviation of a correlation coefficient estimator). Let T (F ) = ρ(F ) where
F is the bivariate distribution of a pair of random variables (X,Y ) with finite fourth moments. We
know from chapter 2 that the sample correlation coefficient ρ̂n ≡ T (Fn) satisfies

√
n(ρ̂n − ρ) ≡

√
n(ρ(Fn)− ρ(F ))→d N(0, V 2)

where V 2 = V ar[Z1 − (ρ/2)[Z2 + Z3]] where Z ≡ (Z1, Z2, Z3) ∼ N3(0,Σ) and Σ is given by

Σ = E(XsYs − ρ,X2
s − 1, Y 2

s − 1)⊗2;

here Xs ≡ (X − µX)/σX and Ys ≡ (Y − µY )/σY are the standardized variables. If F is bivariate
normal, then V 2 = (1− ρ2)2.

Consider estimation of the standard deviation of ρ̂n:

σn(F ) ≡ {V arF (ρ̂n)}1/2.

The normal theory estimator of σn(F ) is

(1− ρ̂2
n)/
√
n− 3.

The delta-method estimate of σn(F ) is

V̂n√
n

= {V̂ ar[Z1 − (ρ/2)[Z2 + Z3]]}1/2/
√
n.
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The (Monte-Carlo approximation to) the bootstrap estimate of σn(F ) is√√√√B−1

B∑
j=1

[ρ̂∗j − ρ∗]2.

Finally the jackknife estimate of σn(F ) is√√√√n− 1

n

n∑
j=1

[ρ̂(i) − ρ̂(·)]2;

see the beginning of section 2 for the notation used here. We will discuss the jackknife further in
sections 2 and 4.

Parametric Bootstrap Methods
Once the idea of nonparametric bootstrapping (sampling from the empirical measure Pn) be-

comes clear, it seems natural to consider sampling from other estimators of the unknown P . For
example, if we are quite confident that some parametric model holds, then it seems that we should
consider bootstrapping by sampling from an estimator of P based on the parametric model. Here
is a formal description of this type of model - based bootstrap procedure.

Let (X ,A) be a measurable space, and let P = {Pθ : θ ∈ Θ} be a model, parametric, semi-
parametric or nonparametric. We do not insist that Θ be finite - dimensional. For example,
in a parametric extreme case P could be the family of all normal (Gaussian) distributions on
(X ,A) = (Rd,Bd). Or, to give a nonparametric example with only a smoothness restriction, P
could be the family of all distributions on (X ,A) = (Rd,Bd) with a density with respect to Lebesgue
measure which is uniformly continuous.

Let X1, . . . , Xn, . . . be i.i.d. with distribution Pθ ∈ P. We assume that there exists an estimator
θ̂n = θ̂n(X1, . . . , Xn) of θ. Then Efron’s parametric (or model - based) bootstrap proceeds by sam-
pling from the estimated or fitted model Pθ̂(ω) ≡ P̂

ω
n : suppose that X∗n,1, . . . , X

∗
n,n are independent

and identically distributed with distribution P̂ωn on (X ,A), and let

P∗n ≡ n−1
n∑
i=1

δX∗
n,i
≡ the parametric bootstrap empirical measure .(1)

The key difference between this parametric bootstrap procedure and the nonparametric bootstrap
discussed earlier in this section is that we are now sampling from the model - based estimator
P̂n = pθ̂n of P rather than from the nonparametric estimator Pn.

Example 2.3 Suppose that X1, . . . , Xn are i.i.d. Pθ = N(µ, σ2) where θ = (µ, σ2). Let θ̂n =
(µ̂n, σ̂

2
n) = (Xn, S

2
n) where S2

n is the usual unbiased estimator of σ2, and hence
√
n(µ̂n − µ)

σ̂n
∼ tn−1,

(n− 1)σ̂2
n

σ2
∼ χ2

n−1.

Now Pθ̂n = N(µ̂n, σ̂
2
n), and if X∗1 , . . . , X

∗
n are i.i.d. Pθ̂n , then the bootstrap estimators θ̂∗n = (µ̂∗n, σ̂

∗2
n )

satisfy, conditionally on Fn,
√
n(µ̂∗n − µ̂n)

σ̂∗n
∼ tn−1,

(n− 1)σ̂∗2n
σ̂2
n

∼ χ2
n−1.

Thus the bootstrap estimators have exactly the same distributions as the original estimators in this
case.
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Example 2.4 Suppose that X1, . . . , Xn are i.i.d. Pθ = exponential(1/θ): Pθ(X1 > t) = exp(−t/θ)
for t ≥ 0. Then θ̂n = Xn and nθ̂n/θ ∼ Gamma(n, 1). Now Pθ̂n = exponential(1/θ̂n), and if

X∗1 , . . . , X
∗
n are i.i.d. Pθ̂n , then θ̂∗n = X

∗
n has (nθ̂∗n/θ̂n|Fn) ∼ Gamma(n, 1), so the bootstrap

distribution replicates the original estimator exactly.

Example 2.5 (Bootstrapping from a “smoothed empirical measure”; or the “smoothed boot-
strap”). Suppose that

P = {P on (Rd,Bd) : p =
dP

dλ
exists and is uniformly continuous}.

Then one way to estimate P so that our estimator P̂n ∈ P is via a kernel estimator of the density
p:

p̂n(x) =
1

bdn

∫
k

(
y − x
bn

)
dPn(y)

where k : Rd → R is a uniformly continuous density function. Then P̂n is defined for C ∈ A by

P̂n(C) =

∫
C
p̂n(x)dx,

and the model- based bootstrap proceeds by sampling from P̂n.

There are many other examples of this type involving nonparametric or semiparametric models
P. For some work on “smoothed bootstrap” methods see e.g. Silverman and Young (1987) and
Hall, DiCiccio, and Romano (1989).

Exchangeably - weighted and “Bayesian” bootstrap methods

In the course of example 5.1 we introduced the vector M of counts of how many times the
bootstrap variables X∗i equal the observations Xj(ω) in the underlying sample. Thinking about the
process of sampling at random (with replacement) from the population described by the empirical
measure Pn, it becomes clear that we can think of the bootstrap empirical measure P∗n as the
empirical measure with multinomial random weights:

P∗n =
1

n

n∑
i=1

δX∗
i

=
1

n

n∑
i=1

MiδXi(ω).

This view of Efron’s nonparametric bootstrap as the empirical measure with random weights sug-
gests that we could obtain other random measures which would behave much the same way as
Efron’s nonparametric bootstrap, but without the same random sampling interpretation, by re-
placing the vector of multinomial weights by some other random vector W . One of the possible
deficiencies of the nonparametric bootstrap involves its “discreteness” via missing observations in
the original sample: note that the number of points of the original sample which are missed (or not
given any bootstrap weight) is Nn ≡ #{j ≤ n : Mj = 0} =

∑n
j=1 1{Mj = 0}. hence the proportion

of observations missed by the bootstrap is n−1Nn, and the expected number proportion of missed
observations is

E(n−1Nn) = P (M1 = 0) = (1− 1/n)n → e−1=̇.36787 . . . .
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[Moreover, from occupancy theory for urn models

√
n(n−1Nn − (1− 1/n)n)→d N(0, e−1(1− 2e−1)) = N(0, .09720887 . . .);

see e.g. Johnson and Kotz (1977), page 317, 3. with r = 0.] By using some other vector of
exchangeable weights W rather than Mn ∼ Multn(n, (1/n, . . . , 1/n)), we might be able to avoid
some of this discreteness caused by multinomial weights.

Since the resulting measure should be a probability measure, it seems reasonable to require
that the components of W should sum to n. Since the multinomial random vector with cell
probabilities all equal to 1/n is exchangeable, it seems reasonable to require that the vector W

have an exchangeable distribution: i.e. πW ≡ (Wπ(1), . . . ,Wπ(n))
d
= W for all permutations π of

{1, . . . , n}. Then

PWn ≡
1

n

n∑
i=1

WniδXi(ω)

is called the exchangeably weighted bootstrap empirical measure corresponding to the weight vector
W . Here are several examples.

Example 2.6 (Dirichlet weights). Suppose that Y1, Y2, . . . are i.i.d. exponential(1) random vari-
ables, and set

Wni ≡
nYi

Y1 + · · ·+ Yn
, i = 1, . . . , n.

The resulting random vector W/n has a Dirichlet(1, . . . , 1) distribution; i.e. n−1W
d
= D where the

Di’s are the spacings of a random sample of n− 1 Uniform(0, 1) random variables.

Example 2.7 (More general continuous weights). Other weights W of the same for as in example
1.6 are obtained by replacing the exponential distribution of the Y ’s by some other distribution on
R+. It will turn out that the limit theory can be established for any of these weights as long as the
Yi’s satisfy Yi ∈ L2,1; i.e.

∫∞
0

√
P (|Y | > t)dt <∞.

Example 2.8 (Jackknife weights). Suppose that w = (wn,1, . . . , wn,n) is a vector of constants
which sum to n:

∑n
i=1wn,i = n. LetW be a random permutation of the coordinates of w: ifR is uni-

formly distributed over Π ≡ {all permutations of {1, . . . , n}}, then W ≡ Rw ≡ (wn,R1 , . . . , wn,Rn).
If we take w = (n/(n− d))1n−d = (n/(n− d)(1, . . . 1, 0, . . . 0) where 1n−d is the vector with all 1’s
in the first n−d coordinates and 0’s in the remaining d coordinates, then these weights Wn,i corre-
spond to the delete -d jackknife. It turns out that these weights yield behavior like that of Efron’s
nonparametric bootstrap (with multinomial weights) only if d = dn satisfies n−1dn → α > 0.

Other weights W based on various urn schemes are also possible; see Praestgaard and Wellner
(1993) for some of these.
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3 The Jackknife

The jackknife preceded the bootstrap, mostly due to its simplicity and relative ease of computation.
The original work on the “delete -one” jackknife is due to Quenouille (1949) and Tukey (1958).
Here is how it works.

Suppose that T (Fn) estimates T (F ). Let

Tn:i ≡ T (Fn−1,i) where Fn−1,i(x) ≡ 1

n− 1

∑
j 6=i

1(−∞,x](Xj);

thus Tn,i is the estimator based on the data with Xi deleted or left out. Let

Tn,· ≡
1

n

n∑
i=1

Tn,i.

We also set

T ∗n,i ≡ nTn − (n− 1)Tn,i ≡ ith pseudo value

and T
∗
n ≡ n−1

∑n
i=1 T

∗
n,i = nTn − (n− 1)Tn,·.

The Jackknife estimator of bias, and the jackknife estimator of T (F )
Now let En ≡ EFTn = EFT (Fn), and suppose that we can expand En in powers of n−1 as

follows:

En ≡ EFTn = T (F ) +
a1(F )

n
+
a2(F )

n2
+ · · · .

Then the bias of the estimator Tn = T (Fn) is

biasn(F ) ≡ EF (Tn)− T (F ) =
a1(F )

n
+
a2(F )

n2
+ · · · .

We can also write

T (F ) = EF (Tn)− biasn(F ).

Note that

EFTn,· = En−1 = T (F ) +
a1(F )

n− 1
+

a2(F )

(n− 1)2
+ · · · .

Hence it follows that

EF (T
∗
n) = nEn − (n− 1)En−1

= T (F ) + a2(F )

{
1

n
− 1

n− 1

}
+ a3(F )

{
1

n2
− 1

(n− 1)2

}
+ · · ·

= T (F )− a2(F )

n(n− 1)
+ · · · .

Thus T
∗
n has bias O(n−2) whereas Tn has bias of the order O(n−1) if a1(F ) 6= 0. We call T

∗
n the

jackknife estimator of T (F ); similarly, by writing

T
∗
n = Tn − b̂iasn,

we find that

b̂iasn = Tn − T
∗
n = (n− 1){Tn,· − Tn}.
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Example 3.1 If T (F ) = EF (X) =
∫
xdF (x) so that Tn = Xn, then T ∗n,i = nTn− (n−1)Tn,i = Xi,

so T
∗
n = Xn = Tn, and b̂iasn = 0.

Example 3.2 If T (F ) = V arF (X) =
∫

(x−
∫
ydF (y))2dF (x) so that Tn = T (Fn) = n−1

∑n
i=1(Xi−

Xn)2, the empirical (biased!) estimator of T (F ), then En = ((n − 1)/n)T (F ) = T (F ) − T (F )/n,
and algebra shows that the jackknife estimator of T (F ) is T

∗
n =

∑n
i=1(Xi−X)2/(n− 1), the usual

unbiased estimator of T (F ). The bias estimtor is just

b̂iasn = − 1

n(n− 1)

n∑
i=1

(Xi −X)2.

The Jackknife estimator of variance

Now consider estimation of

V arn ≡ V arF (Tn) = V arF (T (Fn)).

Tukey’s jackknife estimator of V arn is

V̂ arn =
n− 1

n

n∑
i=1

(Tn,i − Tn,·)2

=
1

n(n− 1)

n∑
i=1

[T ∗n,i − T
∗
n]2 ≡ n− 1

n
Ṽ arn−1,

and hence

Ṽ arn−1 =
1

(n− 1)2

n∑
i=1

(T ∗n,i − T
∗
n)2.

Since

V ar(Xn) =
σ2

n
=
n− 1

n

σ2

n− 1
=
n− 1

n
V ar(Xn−1),

we can regard the factor of (n−1)/n as an adjustment from sample size n−1 to sample size n, and

Ṽ arn−1 as an estimator of V arn−1 ≡ V arF (Tn−1). The following result of Efron and Stein (1981)

shows that the jackknife estimate Ṽ arn−1 of V arn−1 is always biased upwards:

Theorem 3.1 (Efron and Stein, 1981). E(Ṽ arn−1) ≥ V arn−1.

Proof. See Efron (1982), chapter 4, or Efron and Stein (1981). The proof proceeds by way of
the (Hoeffding) U-statistic decomposition of an arbitrary symmetric statistic. 2

For further discussion of the relationship between the jackknife and the bootstrap, see Efron
and Tibshirani, pages 145 - 148 and 287. They show that the jackknife can be viewed as an
approximation to the bootstrap (via linearization - i.e. the delta method).
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Unfortunately, the jackknife estimate of variance fails for many functionals T (F ) which are not
sufficiently smooth. In fact, it fails for the median functional T (F ) = F−1(1/2): for this T (F ) and
n = 2m, if g = F−1 has a continuous derivative in a neighborhood of 1/2,

nV̂ arn = n(n− 1)

{
X(m+1) −X(m)

2

}2

→d
1

4f2(F−1(1/2))

(
χ2

2

2

)2

.(1)

Now Y ≡ (χ2
2/2)2 has E(Y ) = 2, V ar(Y ) = 20, and is random! On the other hand

√
n(T (Fn)− T (F ))→d N(0,

1/4

f2(F−1(1/2))
),

and if EF |X|r <∞ for some r > 0, then

nV arF (T (Fn))→ 1/4

f2(F−1(1/2))

by uniform integrability arguments. Thus the jackknife estimator of variance is not consistent for
the median functional.

Proof. of (1): Now X(i) = F−1(ξ(i)), i = 1, . . . , n where 0 ≤ ξ(1) ≤ · · · ≤ ξ(n) ≤ 1 are the order
statistics of a sample of n Uniform(0, 1) random variables. Moreover, for any i = 1, . . . , n,

n(ξ(i) − ξ(i−1))
d
= nξ(1) →d exponential(1).

Thus if g ≡ F−1 has a continuous derivative in a neighborhood of 1/2, by the mean value theorem

n(X(m+1) −X(m))
d
=

g(ξ(m+1))− g(ξ(m))

ξ(m+1) − ξ(m)
n(ξ(m+1) − ξ(m))

= g′(ξ(m) + θ(ξ(m+1) − ξ(m)))n(ξ(m+1) − ξ(m)), |θ| ≤ 1,

= g′(G−1
n (1/2) + θn(ξ(m+1) − ξ(m))/n)n(ξ(m+1) − ξ(m))

→d g′(1/2 + 0) exp(1)

by Slutsky’s theorem, continuity of g′, and ‖G−1
n − I‖∞ →a.s. 0. Hence we have

nV̂ arn =
n− 1

4n
{n(X(m+1) −X(m))}2

→d
1

4
g′(1/2)2 exp(1)2 by continuous mapping

d
=

1/4

f2(F−1(1/2))
(χ2

1/2)2

since g′ = 1/f(F−1) and 2 exp(1)
d
= χ2

2. 2

The delete - d Jackknife
See Shao and Wu (1989), Shao (1993), and Praestgaard (1993) for more on delete - d jackknife

methods.
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4 Some limit theory for bootstrap methods

We begin again with Efron’s nonparametric bootstrap. Our goal will be to show that the asymptotic
behavior of the distribution of the nonparametric bootstrap estimator “mimics” the behavior of
the original estimator in probability or almost surely: if we are estimating T (P ) by T (Pn) and we
know (perhaps by a delta method argument) that

√
n(T (Pn)− T (P ))→d N(0, V 2(P )),

then our goal will be to show that the bootstrap estimator satisfies
√
n(T (P∗n)− T (Pn))→d N(0, V 2(P )) in probability or a.s..

For concreteness, first consider the sample mean of a distribution P on R: if X ∼ P and
EX2 <∞, then for T (P ) =

∫
xdP (x) ≡ µ(P ) we know that

√
n(T (Pn)− T (P )) =

√
n(Xn − µ(P ))→d N(0, V arP (X)).

The corresponding statement for the bootstrap is:

Theorem 4.1 If EX2 <∞, then for a.e. sequence X1, X2, . . .,
√
n(T (P∗n)− T (Pn)) =

√
n(X

∗
n −Xn) →d N(0, V ar(X)).

Proof. Now E∗X
∗
ni = n−1

∑n
i=1Xi(ω) = Xn(ω), and

V ar∗(X
∗
ni) =

1

n

n∑
i=1

(Xi(ω)−Xn(ω))2 ≡ S2
n.

It follows that

√
n(X

∗
n −Xn(ω)) =

n∑
i=1

Zni

where Zni ≡ n−1/2(X∗ni−Xn(ω)), i = 1, . . . , n are independent, have E∗Zni = 0, σ2
ni = n−1S2

n, and
σ2
n =

∑n
i=1 σ

2
ni = S2

n →a.s. σ
2. Finally, for ε > 0, the Lindeberg condition is

1

σ2
n

n∑
i=1

E∗|Zni|21{|Zni| > εσn}

=
1

S2
n

nE∗|n−1/2(X∗n1 −Xn(ω)|21{|X∗n1 −Xn| >
√
nεSn}

=
1

S2
n

1

n

n∑
i=1

|Xi(ω)−Xn(ω)|21{|Xi −Xn| >
√
nεSn}

≤ 1{max
1≤i≤n

|Xi −Xn| > ε
√
nSn}

→a.s. 0

since E|X − µ|2 <∞ implies that

1√
n

max
1≤i≤n

|Xi −Xn| ≤
1√
n

max
1≤i≤n

|Xi − µ|+
1√
n
|µ−Xn| →a.s. 0,

and hence the theorem follows from the Lindeberg-Feller Central Limit Theorem. 2

The above proof is basically from Bickel and Freedman (1981). The more refined statements of
the following theorem are due to Singh (1981).
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Theorem 4.2 (Singh, 1981).
A. If E(X2) <∞, then

Dn ≡ Dn(X) ≡ ‖P ∗(
√
n(X

∗
n −Xn) ≤ x)− P (

√
n(Xn − EF (X)) ≤ x)‖∞ →a.s. 0.

B. If E(X4) <∞, then

lim sup
n→∞

√
n

(log log n)1/2
Dn =

√
V ar[(X − µ)2]

2σ2
√

2πe
a.s.

C. If E|X|3 <∞, and

Ds
n ≡ ‖P ∗(

√
n(X

∗
n −Xn)/Sn ≤ x)− P (

√
n(Xn − EF (X))/σ ≤ x)‖∞

where S2
n = n−1

∑n
1 (Xi −Xn)2, then

lim sup
n→∞

√
nDs

n ≤ Kρ/σ3 a.s.

where ρ ≡ E|X − µ|3 <∞ and K is the universal constant of the Berry - Esseen bound.
D. If E|X|3 <∞ and F is non-lattice, then

P ∗(
√
n(X

∗
n −Xn)/Sn ≤ x) = Φ(x) +

µ3(1− x2)

6σ3n1/2
φ(x) + o(n−1/2)

uniformly in x a.s. where Φ and φ are the standard normal d.f. and standard normal density
function respectively; hence in this case

√
nDs

n →a.s. 0.

Now we turn to the corresponding behavior of the bootstrap empirical distribution function
F∗n (or bootstrap empirical measure P∗n). We know that for X = R we have, by the inverse
transformation,

√
n(Fn − F )

d
= Un(F )⇒ U(F )

where Un is the empirical process of n i.i.d. Uniform(0, 1) random variables and U is a Brownian
bridge process on [0, 1]. The following theorem says that the bootstrap mimics this behavior for
almost every sequence X1, X2, . . ..

Theorem 4.3 If m ∧ n→∞, then for almost every sequence X1, X2, . . .,
√
m(F∗m − Fn)⇒ U∗(F )

where U∗ is a Brownian bridge process on [0, 1].

Proof. The following proof is due to Shorack (1982). Let ξ∗1 , ξ
∗
2 , . . . be i.i.d. Uniform(0, 1), let

G∗m be the empirical d.f. of the first m of the ξ∗i ’s, and let U∗m ≡
√
m(G∗m− I) be the corresponding

empirical process. By the Skorokhod construction we can construct the sequence {U∗m} on a
common probability space with a Brownian bridge process U∗ so that ‖U∗m − U∗‖∞ →a.s. 0. [In
fact by the Hungarian construction, this can be carried out with a sequence of Brownian bridge
processes B0

m so that ‖U∗m − B0
m‖∞ ≤ M(logm)/

√
m almost surely; at the moment we only need

the less precise result.]
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Now we construct the bootstrap sample in terms of the uniform random variables ξ∗i : by the
inverse transformation the random variables

X∗i ≡ F−1
n (ξ∗i ), i = 1, . . . ,m

are, conditional on Fn , i.i.d. with d.f. Fn, and furthermore the empirical d.f. F∗m thereof satisfies
F∗m = G∗m(Fn). Hence we have

√
m(F∗m − Fn) =

√
m(G∗m(Fn)− Fn) = U∗m(Fn).

But

‖Um(Fn)− U∗(F )‖∞ ≤ ‖U∗m(Fn)− U∗(Fn)‖∞ + ‖U∗(Fn)− U∗(F )‖∞
≤ ‖U∗m − U∗‖∞ + ‖U∗(Fn)− U∗(F )‖∞
→a.s. 0 + 0 = 0

since U∗ is uniformly continuous and ‖Fn − F‖∞ →a.s. 0 by the Glivenko-Cantelli theorem. 2

Example 4.1 (Bootstrap confidence bands for an arbitrary distribution function). Consider the
distribution of the Kolmogorov statistic Dn ≡

√
n supx |Fn(x)− F (x)| as in example 1.E:

Kn(x, F ) = PF (Dn ≤ x).

If F is continuous this distribution does not depend on F and is tabled for small n; the asymptotic
distribution is then also independent of F and is just the distribution of ‖U‖∞ where U is a
Brownian bridge process on [0, 1]. If F is discontinuous, however, then both Kn and the asymptotic
distribution K∞ depend on F . The bootstrap offers a way around this difficulty: the bootstrap
estimator of Kn(·, F ) is just

Kn(x,Fn) = PFn(
√
n‖F∗n − Fn‖ ≤ x),

and a Monte-Carlo approximation of it is

K∗n,B(x) ≡ 1

B

B∑
j=1

1{
√
n‖F∗n,j − Fn‖∞ ≤ x}

where X∗j,1, . . . , X
∗
j,n is a random sample from Fn for each j = 1, . . . , B.

If we could find approximate upper α percentage points of the distribution of Dn; i.e. numbers
cn(α, F ) so that

lim
n→∞

Kn(cn(α, F ), F ) = lim
n→∞

PF (
√
n‖Fn − F‖∞ ≤ cn(α, F )) = 1− α,

then we could construct and asymptotic 1− α confidence band for F :

lim
n→∞

PF {Fn(x)− n−1/2cn(α, F ) ≤ F (x) ≤ Fn(x) + n−1/2cn(α, F ) for all x ∈ R} = 1− α.

But our natural bootstrap estimator of cn(α, F ) is just cn(α,Fn) = K−1
n (1− α,Fn); and a Monte-

Carlo approximation of this is just (K∗n,B)−1(1− α) ≡ c∗n,B(α). Thus we obtain an asymptotically
valid family of confidence bands for an arbitrary distribution function F :
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Corollary 1 The bootstrap confidence bands {Fn ± n−1/2cn(α,Fn)} satisfy

lim
n→∞

PF {Fn(x)− n−1/2cn(α,Fn) ≤ F (x) ≤ Fn(x) + n1/3cn(α,Fn) for all x ∈ R} = 1− α.

The behavior of these bands, and the savings over the (conservative) asymptotic or finite-sample
Kolmogorov bands has been investigated by Bickel and Krieger (1989).

Bootstrapping Empirical Measures
Does Theorem 4.3 carry over to Efron’s bootstrap for empirical measures? The answer is “yes”

as shown by Giné and Zinn (1990). For a class of functions F ⊂ L2(P ), we let the envelope function
F be defined by F (x) ≡ supf∈F |f(x)|. Here are the two bootstrap limit theorems of Giné and Zinn
(1990):

Theorem 4.4 (Giné and Zinn, 1990). (Almost sure bootstrap limit theorem). Suppose that F is
P−measurable. Then the following are equivalent:

A. F ∈ CLT (P ) and P (F 2) <∞; i.e.
√
n(Pn−P )⇒ GP where GP is a ρP− uniformly continuous

P− Brownian bridge process on F .

B.
√
n(P∗n − Pωn)⇒ GP in `∞(F) almost surely.

Theorem 4.5 (Giné and Zinn, 1990). (In probability bootstrap limit theorem). Suppose that F
is P−measurable. Then the following are equivalent:

A. F ∈ CLT (P ); i.e.
√
n(Pn − P )⇒ GP where GP is a ρP− uniformly continuous P− Brownian

bridge process on F .

B.
√
n(P∗n − Pn)⇒ GP in `∞(F) in probability.

The proofs of these two theorem rely on “multiplier inequalities” closedly related to the “mul-
tiplier central limit theorem”, Poissonization inequalities, and other tools from empirical process
theory. See Giné and Zinn (1990), Klaassen and Wellner (1992), and van der Vaart and Wellner
(1996), chapters 3.6 and 2.9. In particular, van der Vaart and Wellner (1996), theorems 3.6.1
and 3.6.2, give a version of theorems 4.4 and 4.5 with a somewhat improved treatment of the
measurability issues.

The spirit of the Giné and Zinn theorems carry over to the exchangeably - weighted bootstrap
methods as shown by Praestgaard and Wellner (1993). Here are the hypotheses needed on the
weights:

W1. The vectors W = Wn in Rn are exchangeable for each n.

W2. Wnj ≥ 0 for all j = 1, . . . , n and
∑n

j=1Wnj = n.

W3. supn ‖Wn1‖2,1 <∞ where ‖Wn1‖2,1 ≡
∫∞

0

√
P (Wn1 ≥ t) dt.

W4. limλ→∞ lim supn→∞ supt≥λ t
2P (Wn1 ≥ t) = 0.

W5. n−1
∑n

j=1(Wnj − 1)2 →p c
2 > 0.

Theorem 4.6 (Exchangeably weighted bootstrap limit theorem). Suppose that F is P− measur-
able and that the random weight vectors {Wn} satisfy W1 - W5. Then:
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A. F ∈ CLT (P ) and P (F 2) <∞ implies that

√
n(PWn − Pωn)⇒ GP(1)

in `∞(F) almost surely.

B. F ∈ CLT (P ) implies that the convergence in (1) holds in probability.

For the proofs, see Praestgaard and Wellner (1993), or van der Vaart and Wellner (1996),
chapter 3.6.

The methods developed in Praestgaard and Wellner (1993) also lead to the following limit
theorem for Efron’s (multinomial) bootstrap with a bootstrap sample size m = mn possibly different
than n.

Corollary 1 Suppose that F is P−measurable. Then:

A. F ∈ CLT (P ) and P (F 2) <∞ implies that

√
m(P∗m − Pn)⇒ GP(2)

in `∞(F) almost surely if m ∧ n→∞.

B. F ∈ CLT (P ) implies that the convergence in (2) holds in probability.

Failures of Efron’s Nonparametric Bootstrap
Just as the Jackknife fails for functions T (F ) which are not sufficiently smooth (as we saw in

section 2), the nonparametric bootstrap fails in a variety of situations involving “tail behavior”.
The following example is typical of these situations in which the empirical distribution is not a
sufficiently accurate estimator of the population (true) distribution for the bootstrap to succeed.

Example 4.2 (Bootstrapping the estimator of θ for the Uniform(0, θ) distribution.) Suppose that
X1, . . . , Xn are i.i.d Uniform(0, θ). Then θ̂n = X(n) ≡ max1≤i≤nXi and

n(θ − θ̂n) = nθ(1−X(n)/θ)
d
= θn(1− ξ(n))→d θY

where Y ∼ exp(1). Thus the limiting distribution is exponential(1/θ). Now let X∗1 , . . . , X
∗
n be i.i.d.

Fn, and let θ̂∗n ≡ X∗(n). Then

P (θ̂∗n = X(n)|Fn) = 1− P (X∗(n) < X(n)|Fn)

= 1− P (all X∗i < X(n)|Fn) = 1−
(
n− 1

n

)n
= 1−

(
1− 1

n

)n
→ 1− e−1=̇.62 · · · ,

and, more generally,

P (n(X(n) − θ̂∗n) > n(X(n) −X(n−k+1))|Fn) = P (X∗(n) < X(n−k+1)|Fn)

= (1− k/n)n → e−k.

[In fact, this can be pushed further to show that the limiting distribution of the bootstrap is a
random distribution.] Thus the bootstrap distribution differs dramatically from the actual distri-
bution for large sample sizes, and this is also reflected in the finite sample distributions; see Efron
and Tibshirani (1993), pages 81 and Figure 7.11 on page 83.
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Example 4.3 (Bootstrapping a V−statistic). Suppose that X1, . . . , Xn are i.i.d. with common
distribution function F , and let h : R2 → R be a symmetric function; i.e. h(x, y) = h(y, x). Then

Vn ≡
1

n2

n∑
i=1

n∑
j=1

h(Xi, Xj) =

∫∫
h(x, y) dFn(x)dFn(y)

is the V-statistic based on the function h while Un =
(
n
2

)−1∑
1≤i<j≤n h(Xi, Xj) = n−1(n −

1)−1
∑

i 6=j h(Xi, Xj) is the U-statistic based on the function h. Note that Un and Vn are closely
related since

Un =
2

n(n− 1)

∑
1≤i<j≤n

h(Xi, Xj)

=
1

n(n− 1)

∑
i 6=j

h(Xi, Xj)

=
1

n(n− 1)

{
n2Vn −

n∑
i=1

h(Xi, Xi)

}

=
n

n− 1
Vn −

1

n− 1

∫
h(x, x)dFn(x).

Now suppose that EFX = 0 and h(x, y) = xy. Then

Vn =

∫∫
xy dFn(x)dFn(y) =

{∫
xdFn(x)

}2

= X
2
n,

and hence if EFX
2 = V arF (X) <∞, then

nVn = (
√
nXn)2 →d (σFZ)2 = σ2

FZ
2 d

= σ2
Fχ

2
1.

Does the nonparametric bootstrap mimic this? Unfortunately, the answer is “no”: with

V ∗n ≡
∫∫

xydF∗n(x)dF∗n(y) = (X
∗
n)2

we have

nV ∗n = (
√
nX
∗
n)2 =

(√
n(X

∗
n −Xn) +

√
nXn

)2

where the first term converges in distribution a.s. conditionally on X1, X2, . . . to σFZ
∗ where

Z∗ ∼ N(0, 1), but the second term does not converge to zero, but instead converges to something
random and non-degenerate (namely σFZ), and marginally (over both the bootstrap and original
data randomness) we see that nV ∗n →d σ

2
Fχ

2
2. Hence the nonparametric bootstrap fails. This

example is due to Bretagnolle (1983), and a solution to the failure is due to Arcones and Giné
(1992).

General bootstrap without replacement limit theory
One way around the difficulty in the preceding example is to take a bootstrap sample size

m = mn much smaller than n and to try to estimate the distribution (or standard deviation or bias
or other functional) of θ̂mn rather than θ̂n. It turns out that a better way to do this is to draw a
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sample of size mn without replacement. The following quite general result in this spirit is due to
Politis and Romano (1993).

Suppose that Tn ≡ T (Fn) is an estimator of θ ≡ T (F ) and that

τn(Tn − θ)→d Z,(3)

τn →∞,(4)

mn = o(n), and τmn/τn → 0.(5)

Let T̂mn ≡ Tmn(X̂1, . . . , X̂mn) where X̂1, . . . , X̂mn is a sample of size mn drawn without replacement
from {X1, . . . , Xn}.

Theorem 4.7 (Politis and Romano without replacement bootstrap limit theorem). If (3), (4), and
(5) hold, then

τmn(T̂mn − Tn)→d Z

in probability as mn ∧ n→∞.

Proof. We will drop the subscript n on the sample size mn in the proof. first note that

τm(Tn − θ) =
τm
τn
τn(Tn − θ) = o(1)Op(1) = op(1)

by (5), so by writing

τm(T̂m − Tn) = τm(T̂m − θ)− τm(Tn − θ),

it suffices, by Slutsky’s theorem, to show that

P (τm(T̂m − θ) ≤ z|Fn)→p P (Z ≤ z)

for z ∈ C(L(Z)), the continuity set of the distribution function of Z. But

P (τm(T̂m − θ) ≤ z|Fn) =
1(
n
m

) ∑
1≤i1<···<im≤n

1{τm(Tm(Xi1 , . . . , Xim)− θ) ≤ z} ≡ Un,m

is an m−th order U - statistic with

EUn,m = P (τm(Tm(Xi1 , . . . , Xim)− θ) ≤ z)→ P (Z ≤ z)

for all z ∈ C(L(Z)) since m→∞. Hence it suffices to show that

Un,m − EUn,m →p 0.

This follows from Hoeffding’s inequality for U - statistics: since the kernel of the U - statistic in
question is bounded above by 1 and below by 0,

P (|Un,m − E(Un,m)| > t) ≤ 2 exp(−2[n/m]t2/(1− 0)2)→ 0

since n/m = n/mn →∞. 2

Here is a proof of Hoeffding’s inequality in several steps.
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Proposition 4.1 (Hoeffding, 1963). If X1, . . . , Xn are independent and ai ≤ Xi ≤ bi, i = 1, . . . , n,
then with µn ≡ E(Xn),

P (
√
n(Xn − µn) ≥ t) ≤ exp(−2t2/{n−1

n∑
1

(bi − ai)2}) for all t > 0.

Proof. By Markov’s inequality and independence of the Xi’s it follows that for r > 0

P (Xn − µn ≥ t) = P
(
exp(rn(Xn − µn)) ≥ exp(rnt)

)
≤ E exp(rn(Xn − µn))

ernt

=

∏n
i=1Ee

r(Xi−µi)

ernt

where µi = EXi, i = 1, . . . , n. But since erx is convex on [a, b], on [a, b] it lies below the line passing
through (a, era) and (b, erb):

erx ≤ b− x
b− a

era +
x− a
b− a

erb, a ≤ x ≤ b.

Hence

Eer(Xi−µi) ≤ e−rµi
{
bi − µi
bi − ai

erai +
µi − ai
bi − ai

erbi
}

= (1− pi)e−r(µi−ai) + pie
r(bi−µi)

= exp(L(ri))

where pi ≡ (µi − ai)/(bi − ai), ri ≡ r(bi − ai), and

L(ri) = −ripi + log(1− pi + pie
ri).

Now

L′(ri) = −pi +
pi

(1− pi)e−ri + pi

and

L′′(ri) =
pi(1− pi)e−ri

[(1− pi)e−ri + pi]2

=
pi

[(1− pi)e−ri + pi]
· (1− pi)e−ri

[(1− pi)e−ri + pi]

≡ νi(1− νi) ≤ 1/4 since νi ≡
pi

(1− pi)e−ri + pi
∈ [0, 1].

Thus by Taylor’s theorem, with 0 ≤ si ≤ ri,

L(ri) = L(0) + L′(0)ri +
1

2
L′′(si)r

2
i

≤ 0 + 0 +
1

2

1

4
r2
i =

1

8
r2(bi − ai)2.

Hence

Eer(Xi−µi) ≤ exp(r2(bi − ai)2/8)



4. SOME LIMIT THEORY FOR BOOTSTRAP METHODS 21

and

P (Xn − µn ≥ t) ≤ exp(−nrt+ r2
n∑
1

(bi − ai)2/8) ≡ exp(−g(r))

for all r > 0. Since g(r) is maximized (and the resulting bound is minimized) if

r = r0 ≡ 4nt/

n∑
1

(bi − ai)2,

with

g(r0) =
2n2t2∑n

1 (bi − ai)2
,

and the inequality (6) follows. 2

Corollary 1 (Hoeffding, 1963). If X1, . . . , Xn are i.i.d. and

Un,m =
1(
n
m

) ∑
1≤i1<···<im≤n

h(Xi1 , . . . , Xim)

with a ≤ h(x1, . . . , xm) ≤ b for all x1, . . . , xm and h is symmetric in its arguments, then

P (Un,m − EUn,m ≥ t) ≤ exp(−2[n/m]t2/(b− a)2) for all t > 0.(6)

Proof. Suppose that

T = p1T1 + · · ·+ pNTN

where Ti is an average of independent random variables and p1 + · · · + pN = 1. (The random
variables T1, . . . , TN need not be independent.) For r > 0

P (T − ET ≥ t) ≤ e−rtEer(T−ET ) = e−rtEer
∑N

1 pi(Ti−µi)

≤ e−rtE
N∑
i=1

pie
r(Ti−µi) since ex is convex

=

N∑
i=1

piEe
r(Ti−µi−t).(a)

If we can bound E exp(r(Ti − µi − t)) by something not depending on i (for example if T1, . . . , TN
are identically distributed), then this bound will be a bound for P (T ≥ t) since

∑N
1 pi = 1.

Now let k ≡ [n/m] and define

V (X1, . . . , Xn) ≡ 1

k
{h(X1, . . . , Xm) + h(Xm+1, . . . , X2m) + · · ·+ h(X(k−1)m+1, . . . , Xkm)}

≡ Y k

where Yi ≡ h(X(i−1)m+1, . . . , Xim), i = 1, . . . , k are independent. Note that

Un,m =
1

n!

∑
π∈Π

V (Xπ(1), . . . , Xπ(n)) =
N∑
j=1

pjTj
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where pj ≡ 1/n!, j = 1, . . . , n! ≡ N , and Tj ≡ V (Xπj(1), . . . , Xπj(n)) is an average of k independent
random variables for j = 1, . . . , N . Now

P (Tj − ETj ≥ t) = P (Y k − EY k ≥ t)

≤ inf
r>0

E exp(rk(Y k − EY k))

erkt

≤ exp(−2kt2/(b− a)2)

by the proof of Hoeffding’s inequality Proposition 4.1. Hence it follows from (a) that (6) holds.
2

Corollary 2 If ε1, . . . , εn are i.i.d. as 2Bernoulli(1/2) − 1 (i.e. P (εi = ±1) = 1/2), and c1, . . . , cn
are constants, then

P

(
n−1/2

∣∣∣ n∑
i=1

ciεi

∣∣∣ ≥ t) ≤ 2 exp

(
− t2

2(n−1
∑n

i=1 c
2
i )

)
for all t > 0.

Some Limit Theory for Parametric Bootstrapping
It often holds that

√
n(θ̂n − θ)→d Y as n→∞,(7)

and, if θ 7→ Pθ is differentiable in an appropriate sense

√
n(Pθ̂ − Pθ)→d ṖθY as n→∞(8)

where Ṗθ is a derivative map. The parametric bootstrap would proceed by forming θ̂∗n ≡ θ̂n(X∗n1, . . . , X
∗
nn)

where X∗ni are i.i.d. Pθ̂n . We then want to show that: for almost all sample sequences X1, X2, . . .

√
n(θ̂∗n − θ̂n)→d Y

∗ d
= Y(9)

and

√
n(Pθ̂∗ − Pθ̂)→d ṖθY

∗ d
= Y as n→∞.(10)

Let P∗n = n−1
∑n

i=1 δX∗
n,i

. The following result is a useful first step toward proving (9) and (10), es-

pecially if θ̂ = θ(Pn) so that θ̂∗n = θ(P∗n). This type of theorem for a “model-based” or “parametric”
bootstrap empirical process was also suggested by Giné and Zinn (1991).

Theorem 4.8 (Convergence of the “parametric bootstrap” empirical process). Suppose that F is
P - measurable with envelope function F and that:

(i) F ∈ CLTu(P).

(ii) ‖Pθ̂n − Pθ‖
∗
G ≡ ‖P̂n − Pθ‖∗G →a.s. 0 where G = G ∪ G2 ∪ (F ′)2 and F ′ = {f − g : f, g ∈ F}.

(iii) F is P−uniformly square integrable.
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Then, for P∞ almost all sample sequences X1, X2, . . .,

G∗n,n ≡
√
n(P∗n − Pθ̂n)⇒ G∗0

d
= GPθ in `∞(F)

as n→∞.

Proof. First note that (i) and (iii) imply that F ∈ AECu(P, ρP ) and (F , ρP ) is totally
bounded uniformly in P ∈ P by Sheehy and Wellner (1991), theorem 2.2. Hence, in particular,
F ∈ AECu({P̂n}, ρ), and (F , ρPθ) is totally bounded. Furthermore, (iii) implies that for P∞ a.e.
ω the envelope F is {P̂ωn }− uniformly square integrable. Thus, for P∞− a.e. ω, the hypotheses
of Sheehy and Wellner (1991), theorem 3.1, are satisfied by F for the sequence {P̂ωn } ≡ {Pθ̂n(ω)}.
Then the conclusion follows from theorem 3.1 with P0 ≡ Pθ.

To give an example where this result is immediately useful, consider the nonparametric example
mentioned briefly above:

Example 4.4 (Bootstrapping from a “smoothed empirical measure”; or, the “smoothed boot-
strap”). Suppose that

P = {P on (Rd,Bd) : p ≡ dP

dλ
exists and is uniformly continuous}.

Suppose that C is a measurable Vapnik - Chervonenkis class of subsets of Rd. Then F = {1C :
C ∈ C} ∈ CLTu ≡ CLTu(M) ⊂ CLTu(P), so (i) holds. Suppose that P̂n is defined for C ∈ Bd by

P̂n(C) =

∫
1C(x)p̂n(x)dx

where

p̂n(x) =
1

bdn

∫
k

(
y − x
bn

)
dPn(y)

where k : Rd → R is a uniformly continuous density function. It follows that P̂n ∈ P, and, if bn → 0
and nbdn →∞, then∫

|p̂n(x)− p(x)|dx→a.s. 0;

see Devroye (1983), theorem 1. When F is all indicators of a subclass of Borel set C, the supremum
in (ii) is bounded by the total variation distance between P̂n and P , which, in turn, is well-known
to equal half the L1−distance between the respective densities (see e.g. Proposition 2.1.13, page 9,
Chapter 2 notes). Hence

‖P̂n − P‖∗G ≤ ‖P̂n − P‖Bb =
1

2

∫
|p̂n(x)− p(x)|dx→a.s. 0,

so (ii) holds. Since (iii) holds trivially (with F ≡ 1), theorem 3.14 shows that “the bootstrap from
P̂n works:” i.e. for P∞ almost all sample sequences X1, X2, . . ., G∗n,n ⇒ G∗0 ∼ GP in `∞(F).

For more general classes F , the results of Yukich (1989) or van der Vaart (1994) could be used
to verify hypothesis (ii) of theorem 4.5.

Silverman and Young (1987) have studied several smoothed bootstrap methods, and give criteria
for determining when α(Pθ̂n) will give a better estimator of α(P ) than α(Pn) for functionals α :
P → R; see also Hall, DiCiccio, and Romano (1989) for further work in this direction.
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5 The bootstrap and the delta method

Now we combine the results established for the bootstrap empirical process with differentiabil-
ity hypotheses on functionals T (F ) or T (P ) to establish asymptotic validity of the bootstrap for
nonlinear functionals T (F ) or T (P ). The following theorem is due to Gill (1989).

Theorem 5.1 Suppose that T : F → R is Hadamard - differentiable at F with respect to ‖ · ‖∞
tangentially to the subspace Cu(R, ρP ) of uniformly continuous functions (with respect to the
pseudo-metric ρF defined by ρ2(s, t) = V arF (1(−∞,s](X)−1(−∞,t](X)). Let ψF denote the influence
function of T at F ∈ F . Then

√
n(T (Fn)− T (F ))→d N(0, Eψ2

F (X))

and furthermore
√
n(T (F∗n)− T (Fn))→d N(0, Eψ2

F (X)) in probability.

Proof. The first part has been proved already in theorem 7.4.11. The second part proceeds by
a “double - differencing” argument as follows. Suppose that we have constructed versions of both
the original empirical process and the bootstrap empirical process in terms of uniform empirical
processes {Un} and {U∗n} satisfying

‖Un − U‖∞ →a.s. 0, and ‖U∗n − U∗‖∞ →a.s. 0.

Thus with F̃n ≡ Gn(F ),

√
n(Fn − F )

d
=
√
n(F̃n − F ) = Un(F )→a.s. U(F ) in (D(R, ‖ · ‖∞),

and, with F̃∗n ≡ G∗n(F̃n),

√
n(F∗n − Fn)

d
=
√
n(F̃∗n − F̃n) = U∗n(F̃n)→a.s. U∗(F ) in (D(R, ‖ · ‖∞).

Now write

F∗n = F + n−1/2n1/2(F∗n − Fn) + n−1/2n1/2(Fn − F )
d
= F + n−1/2{U∗n(F̃n) + Un(F )}

and

Fn = F + n−1/2n1/2(Fn − F )
d
= F + n−1/2Un(F ).

Thus we may write

√
n(T (F∗n)− T (Fn))

d
=

√
n(T (F + n−1/2{U∗n(F̃n) + Un(F )})− T (F ))

−
√
n(T (F + n−1/2Un(F ))− T (F ))

→a.s. Ṫ (F ;U∗(F ) + U(F ))− Ṫ (F ;U(F ))

= Ṫ (F ;U∗(F )) ∼ N(0, EFψ
2
F (X))

using linearity of Ṫ (F ; ·) in the last step. Thus for the constructed empirical distributions, for a.e.
X̃1, X̃2, . . .

√
n(T (F̃∗n)− T (F̃n))→a.s. Ṫ (F ;U∗(F )) ∼ N(0, Eψ2

F (X)).
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Since →a.s. implies →d, this implies that for a.e. sequence X̃1, X̃2, . . .,

√
n(T (F̃∗n)− T (F̃n))→d Ṫ (F ;U∗(F )) ∼ N(0, Eψ2

F (X)),(a)

and this implies that with

Hn(x, ; F̃n) ≡ PF̃n(
√
n(T (F̃∗n)− T (F̃n)) ≤ x),

for a.e. sequence X̃1, X̃2, . . . we have

dBL∗(Hn(·, F̃n), N(0, ψ2
F (X)))→ 0.

But this just means that

dBL∗(Hn(·, F̃n), N(0, ψ2
F (X)))→a.s. 0

for the constructed sequence F̃n. But Hn(·, F̃n)
d
= Hn(·,Fn) and →a.s. implies →p, so we conclude

that

dBL∗(Hn(·,Fn), N(0, ψ2
F (X)))→p 0.

2

For further results of the type, see Gill (1989), Arcones and Giné (1992), and van der Vaart
and Wellner (1996), chapter 3.9.

Example 5.1 Suppose F is a d.f. which is differentiable at its median T (F ) ≡ F−1(1/2) ≡ m(F ),
and that f(m(F )) ≡ F ′(m(F )) > 0. If X1, . . . , Xn are i.i.d. random variables with d.f. F , let
Mn ≡ F−1

n (1/2) be the sample median, and let

Hn(x, F ) ≡ PrF (
√
n(Mn −m(F )) ≤ x).(1)

Of course it is well known that

Hn(x, F )→ Pr

(
N(0,

1/4

f2(m(F ))
) ≤ x

)
as n→∞

for every x ∈ R.

The natural “bootstrap estimate” of the d.f. Hn(x, F ) is simply Hn(x,Fn) where Fn is the
empirical d.f. of the Xi’s. It follows from theorem 4.1 and Hadamard differentiability of the
median functional T (F ) = F−1(1/2) as proved in Gill (1989) (or see van der Vaart and Wellner
(1996)), section 3.9), that

Hn(x,Fn)→p Pr

(
N(0,

1/4

f2(m(F ))
) ≤ x

)
for all x ∈ R

as n→∞. This type of result was first established by Bickel and Freedman (1981). They showed
that under the hypothesis of continuous differentiability at m(F ) the bootstrap works almost surely.
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Theorem 5.2 (Bickel and Freedman, 1981). Suppose that F is continuously differentiable in a
neighborhood of m(F ) with f(m(F )) > 0. Then for almost every sample sequence X1, X2, . . .

Hn(x,Fn)→ Pr(N(0,
1/4

f2(m(F ))
) ≤ x) as n→∞(2)

as n→∞. In view of Polya’s lemma, (2) can be re-expressed as

sup
x
|Hn(x,Fn)− Φ(x2f(m(F )))| →a.s. 0(3)

Proof. Represent the i.i.d. Xi’s as F−1(ξi) where ξ1, ξ2, . . . are i.i.d. U(0, 1) random variables.
Let Fn = Gn(F ) denote the empirical d.f. of the Xi’s, so that the empirical process of the Xi’s is

√
n(Fn − F ) = Un(F ).(a)

Then represent the bootstrap sample X∗n1, . . . , X
∗
nn as X∗ni ≡ F−1

n (ξ∗i ) where ξ∗1 , ξ
∗
2 , . . . is another

sequence of independent U(0, 1) random variables independent of the ξi’s. Thus the empirical d.f.
of the X∗ni’s is F∗n = G∗n(Fn), and the bootstrap empirical process is

√
n(F∗n − Fn) = U∗n(Fn).(b)

We give the proof of (2) for x ≥ 0; the argument for x < 0 is similar. Now

Hn(x,Fn) = PrFn{
√
n(M∗n −m(Fn)) ≤ x}(c)

= PrFn{F∗−1
n (1/2) ≤ m(Fn) + n−1/2x}

= PrFn{F∗n(m(Fn) + n−1/2x) ≥ 1/2}
= PrFn{U∗n(Fn(m(Fn) + n−1/2x)) ≥ −Dn}

where

Dn ≡
√
n(Fn(m(Fn) + n−1/2x)− 1/2)

=
√
n(Fn(m(Fn) + n−1/2x)− F (m(Fn) + n−1/2x))

+
√
n(F (m(Fn) + n−1/2x)− F (m(Fn)))

+
√
n(F (m(Fn))− Fn(m(Fn))) + o(n−1/2)

= Un(F (m(Fn) + n−1/2x))− Un(F (m(Fn)))(d)

+
√
n[F (m(Fn) + n−1/2x)− F (m(Fn))]

≡ Un(bn)− Un(an) +
√
n(bn)− an).(e)

Now since F is continuously differentiable in a neighborhood of m(F ),
√
n(bn − an) =

√
n[F (m(Fn) + n−1/2x)− F (m(Fn))](f)

→a.s. xf(m(F )) ≡ c > 0 as n→∞.(g)

Hence for n sufficiently large, the first term on the right side in (e) is bounded by

ωn((c+ 1)n−1/2) ≡ sup
s,t: |t−s|≤(c+1)n−1/2

|Un(t)− Un(s)| →a.s. 0 as n→∞

by well known properties of the oscillation modulus ωn(a) of the empirical process Un; see e.g.
Shorack and Wellner (1986), page 542. Hence

Dn →a.s. xf(m(F )).(h)
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But U∗n converges weakly to a Brownian bridge process U∗, and without loss of generality we can
assume that the ξ∗i ’s have been constructed on a common probability space with the U∗ process so
that

‖U∗n − U∗‖∞ →a.s. 0.(i)

Using (h) and (i) with the last line of (c) yields (or, instead of (i), use a similar argument as above
involving the oscillation of U∗n!)

Hn(s,Fn) →a.s. Pr(U∗(1/2) > −xf(m(F ))) as n→∞

= Pr(N(0,
1/4

f2(m(F ))
) ≤ x).

2

I conjecture that the asymptotic validity of the bootstrap in the almost sure sense fails to hold
if F is not continuously differentiable at m(F ).


