
1

Nonparametric Regression

Given data of the form (x1, y1), (x2, y2), . . . , (xn, yn), we seek an estimate of the regression
function g(x) satisfying the model

y = g(x) + ε

where the noise term satisfies the usual conditions assumed for simple linear regression.

There are several approaches to this problem. In this chapter, we will describe methods
involving splines as well as local polynomial methods.

1.1 Spline Regression

The discovery that piecewise polynomials or splines could be used in place of polynomials
occurred in the early twentieth century. Splines have since become one of the most popular
ways of approximating nonlinear functions.

In this section, we will describe some of the basic properties of splines, describing
two bases. We will then go on to discuss how to estimate coefficients of a spline using
least-squares regression. We close this section with a discussion of smoothing splines.

1.1.1 Basic properties of splines

Splines are essentially defined as piecewise polynomials. In this subsection, we will de-
scribe how splines can be viewed as linear combinations of truncated power functions.
We will then describe the B-spline basis which is a more convenient basis for computing
splines.

Truncated power functions

Let t be any real number, then we can define a pth degree truncated power function as

(x − t)p
+ = (x − t)pI{x>t}(x)

As a function of x, this function takes on the value 0 to the left of t, and it takes on the
value (x − t)p to the right of t. The number t is called a knot.

The above truncated power function is a basic example of a spline. In fact, it is a
member of the set of basis functions for the space of splines.

1

2 CHAPTER 1. NONPARAMETRIC REGRESSION

Properties of splines

For simplicity, let us consider a general pth degree spline with a single knot at t. Let P (x)
denote an arbitrary pth degree polynomial

P (x) = β0 + β1x + β2x
2 + · · ·+ βpx

p.

Then
S(x) = P (x) + βp+1(x − t)p

+ (1.1)

takes on the value P (x) for any x ≤ t, and it takes on the value P (x) + βp+1(x − t)p for
any x > t. Thus, restricted to each region, the function is a pth degree polynomial. As a
whole, this function is a pth degree piecewise polynomial; there are two pieces.

Note that we require p + 2 coefficients to specify this piecewise polynomial. This is
one more coefficient than the number needed to specify a pth degree polynomial, and this
is a result of the addition of the truncated power function specified by the knot at t. In
general, we may add k truncated power functions specified by knots at t1, t2, . . . , tk, each
multiplied by different coefficients. This would result in p + k + 1 degrees of freedom.

An important property of splines is their smoothness. Polynomials are very smooth,
possessing all derivatives everywhere. Splines possess all derivatives only at points which
are not knots. The number of derivatives at a knot depends on the degree of the spline.

Consider the spline defined by (1.1). We can show that S(x) is continuous at t, when
p > 0, by noting that

S(t) = P (t)

and
lim
x↓t

βp+1(x − t)p
+ = 0

so that
lim
x↓t

S(x) = P (t).

In fact, we can argue similarly for the first p − 1 derivatives:

S(j)(t) = P (j)(t), j = 1, 2, . . . , p − 1

and
lim
x↓t

βp+1p(p − 1) · · · (p − j + 1)(x − t)p−j = 0

so that
lim
x↓t

S(j)(x) = P (j)(t)

The pth derivative behaves differently:

S(p)(t) = p!βp

and
lim
x↓t

S(p)(x) = p!βp + p!βp+1

1.1. SPLINE REGRESSION 3

so usually there is a discontinuity in the pth derivative. Thus, pth degree splines are
usually said to have no more than p − 1 continuous derivatives. For example, cubic
splines often have two continuous derivatives. This is one reason for their popularity:
having two continuous derivatives is often sufficient to give smooth approximations to
functions. Furthermore, third degree piecewise polynomials are usually numerically well-
behaved.

B-splines

The discussion below (1.1) indicates that we can represent any piecewise polynomial of
degree p in the following way:

S(x) = β0 + β1x + β2x
2 + · · · + βpx

p + βp+1(x − t1)
p
+ + · · ·+ βp+k(x − tk)

p
+ (1.2)

This can be rigourously proven. See de Boor (1978), for example. Display (1.2) says that
any piecewise polynomial can be expressed as a linear combination of truncated power
functions and polynomials of degree p. In other words,

{1, x, x2, . . . , xp, (x − t1)
p
+, (x − t2)

p
+, . . . , (x − tk)

p
+}

is a basis for the space of pth degree splines possessing knots at t1, t2, . . . , tk.
By adding a noise term to (1.2), we can obtain a spline regression model relating a

response y = S(x) + ε to the predictor x. Least-squares can be used to estimate the
coefficients.

The normal equations associated with the truncated power basis are highly ill-conditioned.
In the polynomial context, this problem is avoided by considering orthogonal polynomials.
For p > 0, there are no orthogonal splines. However, there is a basis which is reasonably
well-conditioned, the B-spline basis.

Let us first consider the piecewise constant functions (0th degree splines). These are
normally not of much practical use. However, they provide us with a starting point to
build up the B-spline basis.

The truncated power basis for the piecewise constant functions on an interval [a, b]
having knots at t1, t2, . . . , tk ∈ [a, b] is

{1, (x− t1)
0
+, . . . , (x − tk)

0
+}.

Note that these basis functions overlap alot. That is, they are often 0 together or 1
together. This will lead to the ill-conditioning when applying least-squares mentioned
earlier. A more natural basis for piecewise constant functions is the following

{1x∈(a,t1), 1x∈(t1,t2)(x), 1x∈(t2,t3)(x), . . . , 1x∈(tk−1,tk)(x), 1x∈(tk ,b)(x)}

To see that this is a basis for piecewise constant functions on [a, b] with jumps at t1, . . . , tk,
note that any such function can be written as

S0(x) = β01x∈(a,t1) +

k−1∑

j=1

βj1x∈(tk ,tk+1) + βk1x∈(tk,b).

4 CHAPTER 1. NONPARAMETRIC REGRESSION

Note that if we try to fit such a function to data of the form (x1, y1), (x2, y2), . . . (xn, yn),
we require at least one x value between any pair of knots (which include a and b, the so-
called ‘Boundary knots’) in order to obtain a full-rank model matrix. This is required for
invertibility of the normal equations. Note, as well, that the columns of the model matrix
are orthogonal which implies that this least-squares problem is now very well conditioned.
The reason for the orthogonality is that the regions where the functions are non-zero do
not overlap; each basis function is non-zero only on a single interval of the form [ti, ti+1].
Finally, observe that the size of this basis is the same as the truncated power basis, so we
are requiring the same numbers of degrees of freedom.

Moving to the piecewise linear case, we note first that the piecewise constant B-
splines could be obtained from their truncated counterparts by differencing. Two levels of
differencing applied to the truncated linear functions on [a, b] with knots at t1, . . . , tk gives
a set of continuous piecewise linear functions Bi,1(x) which are non-zero on intervals of
the form [ti, ti+2]. These functions are called or ‘hat’ or ‘chapeau’ functions. They are not
orthogonal, but since Bi,1(x) is nonzero only with Bi−1,1(x) and Bi+1,1(x), the resulting
model matrix used in computing the least-squares regression estimates is well-conditioned.

The more usual way of computing the linear B-spline sequence is through the formula

Bi,1(x) =
(x − ti)

ti+1 − ti
1x∈[ti,ti+1)(x) +

(ti+2 − x)

ti+2 − ti+1

1x∈[ti+1,ti+2)(x), i = −1, 2, . . . , k (1.3)

By taking t−1 = t0 = a and tk+1 = b, we can use the above formula to compute B−1,1(x)
and B0,1(x), Bk−1,1(x) and Bk,1(x), for x ∈ [a, b], using the convention that 0 × ∞ = 0.
In total, this gives us k + 2 basis functions for continuous piecewise linear splines. For
the case of knots at .3 and .6 and boundary knots at 0 and 1, these functions are plotted
in Figure 1.1.1 Note that, with two knots, there are 4 basis functions. The middle two
have the ‘hat’ shape, while the first and last are ‘incomplete’ hats. Note that because the
B-splines are nonzero on at most the union of two neighbouring inter-knot subintervals,
some pairs of B-splines are mutually orthogonal.

1To obtain the plot, type

x <- seq(0, 1, length=50)

matplot(x, bs(x, knots=c(.3, .6), intercept=TRUE, degree=1)[, 1:4],

type="l")

1.1. SPLINE REGRESSION 5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

lin
ea

r
B

−
sp

lin
es

Figure 1.1: Linear B-splines on [0, 1] corresponding to knots at .3 and .6.

Higher degree B-splines can be obtained, recursively, using an extension of the formula
given at (1.3). That is, the pth degree B-spline functions are evaluated from the p − 1st
degree B-spline functions using

Bi,p(x) =
(x − ti)

ti+p − ti
Bi,p−1(x) +

(ti+p+1 − x)

ti+p+1 − ti+1

Bi+1,p−1(x), i = −p,−p + 1, . . . , k. (1.4)

Here, t0 = t−1 = t−2 = · · · = t−p = a and tk = b.

Figure 1.2 illustrates the 7 (i.e. p + k + 1) cubic B-splines on [0, 1] having knots at
.3, .6 and .9. The knot locations have been highlighted using the rug() function.2

2This plot is obtained using

matplot(x, bs(x, knots=c(.3, .6, .9), intercept=TRUE, degree=3)[, 1:7],

type="l")

rug(c(0,.3,.6,.9,1), lwd=2, ticksize=.1)

6 CHAPTER 1. NONPARAMETRIC REGRESSION

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

cu
bi

c
b−

sp
lin

es

Figure 1.2: Cubic B-splines on [0, 1] corresponding to knots at .3, .6 and .9.

From this figure, it can be seen that the ith cubic B-spline is nonzero only on the
interval [ti, ti+4]. In general, the ith p degree B-spline is nonzero only on the interval
[ti, ti+p+1]. This property ensures that the ith and i + j + 1st B-splines are orthogonal,
for j ≥ p. B-splines whose supports overlap are linearly independent.

1.1.2 Least-Squares Splines

Fitting a cubic spline to bivariate data can be done using least-squares. Using the trun-
cated power basis, the model to be fit is of the form

yj = β0 + β1xj + · · ·+ βpx
p
j + βp+1(xj − t1)

p
+ + · · ·+ βp+k(xj − tk)

p
+ + εj, j = 1, 2, . . . , n

where εj satisfies the usual conditions. In vector-matrix form, we may write

y = Tβ + ε (1.5)

where T is an n × (p + k + 1) matrix whose first p + 1 columns correspond to the model
matrix for pth degree polynomial regression, and whose (j, p+1+ i) element is (xj − ti)

p
+.

Applying least-squares to (1.5), we see that

β̂ = (T T T)−1T T y.

Thus, all of the usual linear regression technology is at our disposal here, including stan-
dard error estimates for coefficients and confidence and prediction intervals. Even regres-
sion diagnostics are applicable in the usual manner.

1.1. SPLINE REGRESSION 7

The only difficulty is the poor conditioning of the truncated power basis which will
result in inaccuracies in the calculation of β̂. It is for this reason that the B-spline basis
was introduced. Using this basis, we re-formulate the regression model as

yj =

p+k∑

i=0

βiBi,p(xi) + εj (1.6)

or in vector-matrix form

y = Bβ + ε

where the (j, i) element of B is Bi,p(xj). The least-squares estimate of β is then

β̂ = (BT B)−1BT y

The orthogonality of the B-splines which are far enough apart results in a banded matrix
BT B which has better conditioning properties than the matrix T TT . The bandedness
property actually allows for the use of more efficient numerical techniques in computing
β̂. Again, all of the usual regression techniques are available. The only drawback with
this model is that the coefficients are uninterpretable, and the B-splines are a little less
intuitive than the truncated power functions.

We have been assuming that the knots are known. In general, they are unknown, and
they must be chosen. Badly chosen knots can result in bad approximations. Because the
spline regression problem can be formulated as an ordinary regression problem with a
transformed predictor, it is possible to apply variable selection techniques such as back-
ward selection to choose a set of knots. The usual approach is to start with a set of knots
located at a subset of the order statistics of the predictor. Then backward selection is
applied, using the truncated power basis form of the model. Each time a basis function
is eliminated, the corresponding knot is eliminated. The method has drawbacks, notably
the ill-conditioning of the basis as mentioned earlier.

Figure 1.3 exhibits an example of a least-squares spline with automatically generated
knots, applied to a data set consisting of titanium measurements.3 A version of backward
selection was used to generated these knots; the stopping rule used was similar to the
Akaike Information Criterion (AIC) discussed in Chapter 6. Although this least-squares
spline fit to these data is better than what could be obtained using polynomial regression,
it is unsatisfactory in many ways. The flat regions are not modelled smoothly enough,
and the peak is cut off.

3To obtain Figure 1.3, type

attach(titanium)

y.lm <- lm(g ~ bs(temperature, knots=c(755, 835, 905, 975),

Boundary.knots=c(550, 1100)))

plot(titanium)

lines(temperature, predict(y.lm))

8 CHAPTER 1. NONPARAMETRIC REGRESSION

600 700 800 900 1000

1.
0

1.
5

2.
0

temperature

g

Figure 1.3: A least-squares spline fit to the titanium heat data using automatically gen-
erated knots. The knots used were 755, 835, 905, and 975.

600 700 800 900 1000

1.
0

1.
5

2.
0

temperature

g

Figure 1.4: A least-squares spline fit to the titanium heat data using manually-selected
knots.

A substantial improvement can be obtained by manually selecting additional knots,
and removing some of the automatically generated knots. In particular, we can render
the peak more effectively by adding an additional knot in its vicinity. Adjusting the knot

1.1. SPLINE REGRESSION 9

that was already there improves the fit as well.4

1.1.3 Smoothing Splines

One way around the problem of choosing knots is to use lots of them. A result analogous
to the Weierstrass approximation theorem says that any sufficiently smooth function can
be approximated arbitrarily well by spline functions with enough knots.

The use of large numbers of knots alone is not sufficient to avoid trouble, since we will
over-fit the data if the number of knots k is taken so large that p+k+1 > n. In that case,
we would have no degrees of freedom left for estimating the residual variance. A standard
way of coping with the former problem is to apply a penalty term to the least-squares
problem. One requires that the resulting spline regression estimate has low curvature as
measured by the square of the second derivative.

More precisely, one may try to minimize (for a given constant λ)

n∑

j=1

(yj − S(xj))
2 + λ

∫ b

a

(S ′′(x))2dx

over the set of all functions S(x) which are twice continuously differentiable. The solution
to this minimization problem has been shown to be a cubic spline which is surprisingly
easy to calculate.5 Thus, the problem of choosing a set of knots is replaced by selecting
a value for the smoothing parameter λ. Note that if λ is small, the solution will be a
cubic spline which almost interpolates the data; increasing values of λ render increasingly
smooth approximations.

The usual way of choosing λ is by cross-validation. The ordinary cross-validation
choice of λ minimizes

CV(λ) =
n∑

j=1

(yj − Ŝλ,(j)(xj))
2

where Ŝλ,(j)(x) is the smoothing spline obtained using parameter λ, using all data but the
jth observation. Note that the CV function is similar in spirit to the PRESS statistic, but

4The plot in Figure 1.4 can be generated using

y.lm <- lm(g ~ bs(temperature, knots=c(755, 835, 885, 895, 915, 975),

Boundary.knots=c(550, 1100)))

plot(titanium)

lines(spline(temperature, predict(y.lm)))

5The B-spline coefficients for this spline can be obtained from an expression of the form

β̂ = (BT B + λDT D)−1BT y

where B is the matrix used for least-squares regression splines and D is a matrix that arises in the
calculation involving the squared second derivatives of the spline. Details can be found in de Boor
(1978). It is sufficient to note here that this approach has similarities with ridge regression, and that the
estimated regression is a linear function of the responses.

10 CHAPTER 1. NONPARAMETRIC REGRESSION

it is much more computationally intensive, since the regression must be computed for each
value of j. Recall that PRESS could be computed from one regression, upon exploiting
the diagonal of the hat matrix. If one pursues this idea in the choice of smoothing
parameter, one obtains the so-called generalized cross-validation criterion which turns out
to have very similar behaviour to ordinary cross-validation but with lower computational
requirements. The generalized cross-validation calculation is carried out using the trace
of a matrix which plays the role of the hat matrix.6

Figure 1.5 exhibits a plot which is very similar to what could be obtained using

lines(spline(smooth.spline(temperature, g)))

This invokes the smoothing spline with smoothing parameter selected by generalized cross-
validation. To use ordinary cross-validation, include the argument cv=TRUE.

Penalized splines

The smoothing spline is an example of the use of penalized least-squares. In this case, re-
gression functions which have large second derivatives are penalized, that is, the objective
function to be minimized has something positive added to it. Regression functions which
have small second derivatives are penalized less, but they may fail to fit the data as well.
Thus, the penalty approach seeks a compromise between fitting the data and satisfying a
constraint (in this case, a small second derivative).

Eilers and Marx (1996) generalized this idea by observing that other forms of penalties
may be used. The penalized splines of Eilers and Marx (1996) are based on a similar idea
to the smoothing spline, with two innovations. The penalty term is no longer in terms
of a second derivative, but a second divided difference, and the number of knots can be
specified. (For smoothing splines, the number of knots is effectively equal to the number
of observations.)7

Recall that the least-squares spline problem is to find coefficients β0, β1, . . . , βk+p to
minimize

n∑

j=1

(yj − S(xj))
2

where S(x) =
∑k+p

i=0 βiBi,p(x). Eilers and Marx (1996) advocate the use of k equally spaced
knots, instead of the order statistics of the predictor variable. Note that the number of
knots must be chosen somehow, but this is simpler than choosing knot locations.

The smoothness of a spline is related to its B-spline coefficients; thus, Eilers and Marx
(1996) replace the second derivative penalty for the smoothing spline with ℓth order
differences of B-spline coefficients. These are defined as follows:

∆βi = βi − βi−1

6The hat matrix is called the smoother matrix in this context, and for smoothing splines, it is of the
form

H(λ) = (BT B + λDT D)−1BT .

7Penalized splines are implemented in the function psplinereg() in the R package kspline which can
be obtained from http://www.stats.uwo.ca/faculty/braun/Rlinks.htm.

1.1. SPLINE REGRESSION 11

∆ℓβi = ∆(∆ℓ−1βi), ℓ > 1.

For example,
∆2βi = ∆(∆βi) = βi − 2βi−1 + βi−2

By using a penalty of the form
∑k

i=ℓ+1

(
∆ℓβi

)2
, the smoothness of the resulting regression

function estimate can be controlled.
The penalized least-squares problem is then to choose β0, β1, . . . , βk+p to minimize

n∑

j=1

(yj − S(xj))
2 + λ

k+p∑

i=ℓ+1

(
∆ℓβi

)2
(1.7)

for λ > 0.
In vector-matrix form, this objective function becomes

(y − Bβ)T (y − Bβ) + λβT DTDβ (1.8)

where D is a banded matrix whose entries correspond to the difference penalty. For
example, when ℓ = 1,

D =

0 0 0 · · · 0 0
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
· · · · · · · · · · · ·
0 0 0 · · · − 1 1

When ℓ = 2 (a common choice), the typical row has the nonzero elements 1,−2, 1.
Differentiating (1.8) with respect to β gives

−(y − BBT)B + λβTDT D = 0

or
BT y = (BT B + λDT D)β.

The matrix on the right will usually well-conditioned in practice. The B-spline coefficients
can thus be estimated as

β̂ = (BT B + λDT D)−1BT y.

The fitted values of the p-spline estimate can be calculated from

ŷ = Bβ̂.

Thus, we can see the form of the ‘hat’ matrix:

H = B(BT B + λDT D)−1BT .

This is useful in choosing the smoothing parameter λ. We minimize the ordinary cross-
validation function or the generalized cross-validation function. These functions are com-
puted as follows:

CV(λ) =

n∑

i=1

(
yi − ŷi

1 − hii

)2

12 CHAPTER 1. NONPARAMETRIC REGRESSION

GCV(λ) =

n∑

i=1

(
yi − ŷi

n − tr(H)

)2

.

Eilers and Marx (1996) assert that, in practice, the difference between these two quantities
is small.

In Figure 1.5, we see a penalized cubic spline fit to the titanium heat data, using 30
knots and a smoothing parameter chosen by generalized cross-validation.8

600 700 800 900 1000

1.
0

1.
5

2.
0

temperature

g

Figure 1.5: A penalized spline fit to the titanium heat data.

1.2 Kernel Regression

Local polynomial regression is based on estimating g(x0) for any value x0, using only data
in the immediate neighbourhood of x0.

8To obtain the plot, type

library(kspline) # or source("psplinereg.R")

attach(titanium)

titan.psp <- psplinereg(temperature, g, ndx=30,

smoothpar=seq(.01,1,length=20))

ndx specifies the number of knots.

smoothpar specifies the range of lambda values over which GCV is

minimized.

bdeg = degree of B-splines

pord = order of differencing used in penalty term

plot(titanium)

lines(spline(titan.psp))

1.2. KERNEL REGRESSION 13

First, we expand g(x) in Taylor series about x0:

g(x) = g(x0) + (x − x0)g
(1)(x0) +

1

2
(x − x0)

2g(2)(x0) + · · ·

If we set βj = g(j)(x0)/j!, for j = 0, 1, . . . , p, then a local approximation to g(x) is

g(x)
.
=

p∑

j=0

(x − x0)
jβj .

This approximation is exact at x = x0 (i.e. g(x0) = β0), and tends to lose accuracy as the
difference between x and x0 increases. Local polynomial regression amounts to weighted
least-squares where the weights are taken to be high for those x values close to x0 and
lower for those x values further away from x0.

A simple way of choosing such weights involves the so-called uniform kernel:

Wh(x) =

{
1
2h

, if − h < x < h
0, otherwise

The parameter h is called the bandwidth. Note that Wh(x − x0) takes on the value 1/h
for all x values within a radius of h units of x0, and it takes on the value 0, for all x values
further away from x0. Other symmetric probability density functions, such as the normal
with standard deviation h, can be used in place of the uniform. The normal density is
often preferred over the uniform since it will give a smoother and slightly more accurate
result. Accuracy depends more on bandwidth choice than kernel choice.

The weighted least-squares problem is to minimize

n∑

i=1

(
yi −

p∑

j=0

(xi − x0)
jβj

)2

Wh(xi − x0) (1.9)

with respect to β0, β1, . . . , βp. In vector-matrix form, the least-squares problem of (1.9) is
to minimize

(y − Xβ)TW (y − Xβ)

with respect to β, where W is a diagonal matrix with ith diagonal element Wh(xi − x0),
and X is the usual design matrix for pth degree polynomial regression centered at x0.
That is,

X =

1 (x1 − x0) · · · (x1 − x0)
p

· · · · · · · · · · · ·
1 (xn − x0) · · · (xn − x0)

p

The least-squares estimator for β (at x0) is

β̂ = (XTWX)−1XT Wy.

14 CHAPTER 1. NONPARAMETRIC REGRESSION

The weights argument in the lm() function in R can be used to solve this problem.
The local polynomial approximation to g(x0) is given by

ĝ(x0) = β̂0.

Performing the minimization at a set of x0 values yields a set of ĝ(x0) values which
can be plotted to allow visualization of the local polynomial regression estimate.

A number of functions are available in R. The ksmooth() function does local constant
regression (i.e. p = 0); this is not recommended, for reasons that will be discussed later.
The KernSmooth package contains the function locpoly(); this function can be used to
obtain local polynomial regression fits of any degree. A popular choice is p = 1. In this
case, the dpill() function can be used to obtain a reasonable bandwidth.

As an example, consider the titanium data again. The following code produces the
local linear fit plotted in Figure 1.6. The normal kernel is used by default. The regression
estimate fails to reach the peak, but the flat regions are rendered very smoothly. If
one were to take a smaller bandwidth, the peak might be better approximated at the
expense of less smoothness in the other regions. This is an example of what is called the
bias-variance trade-off.

library(KernSmooth)

attach(titanium)

h <- dpill(temperature, g)

titanium.ll <- locpoly(temperature, g, bandwidth=h, degree=1)

plot(titanium)

lines(spline(titanium.ll))

600 700 800 900 1000

1.
0

1.
5

2.
0

temperature

g

Figure 1.6: A local linear fit to the titanium heat data, using an automatically selected
bandwidth.

1.2. KERNEL REGRESSION 15

1.2.1 Special cases: local constant and local linear

The local constant regression estimator was due originally to Nadaraya (1964) and Watson
(1964), thus it is often referred to as the Nadaraya-Watson estimator.

In this case, the solution to the problem (1.9) has a simple explicit form

β̂0 =

∑n
i=1 Wh(xi − x0)yi∑n
i=1 Wh(xi − x0)

.

Thus, the regression function estimator can be written explicitly as

ĝ(x) =

∑n
i=1 Wh(xi − x)yi∑n
i=1 Wh(xi − x)

.

The local linear regression estimator (i.e. p = 1) can be written explicitly as

ĝ(x) =
S2(x)T0(x) − S1(x)T1(x)

S2(x)S0(x) − S2
1(x)

where

Si(x) =
n∑

j=1

Wh(xj − x)(xj − x)i, i ≥ 0

and

Ti(x) =
n∑

j=1

Wh(xj − x)(xj − x)iyj, i ≥ 0.

Efficient calculation of this estimator is discussed in Wand and Jones (1995), for example.

1.2.2 Asymptotic accuracy

When the regression function, g(x), is nonlinear, kernel regression estimators will be
biased. The bias increases with the bandwidth, h. Thus, small bias will be achieved if h
is taken to be very small. However, it can be shown that the variance of the estimator
increases as h decreases. Thus, we should not take h too small. The best value of h will be
the one that trades off bias against variance. Usually, we would prefer a bandwidth which
gives smallest mean squared error (pointwise) or mean integrated squared error (MISE)
over the interval containing the predictor values. It is usually most convenient to consider
asymptotic approximations to these quantities. The asymptotics depend upon the sample
size n becoming infinitely large and the bandwidth h becoming very small. We will see
that for local constant and local linear regression, the bandwidth should be in the order
of n−1/5. We will also see that there is additional bias near the boundaries of the data for
local constant regression, but there is no such problem for local linear regression.

16 CHAPTER 1. NONPARAMETRIC REGRESSION

Bias

For simplicity, we assume that the uniform kernel Wh(x) is in use. We also assume that
the regression function, g(x), has three continuous derivatives, and that the predictor
values are specified at xi = i/(n + 1), for i = 1, 2, . . . , n. We consider estimation of
the regression function on the interval [0, 1]. The results that we will obtain here can
be derived under more general conditions; the basic idea behind the derivation remains
unchanged, but the details may obscure the main ideas.

We consider the Nadaraya-Watson estimator first. It can be expressed as

ĝ(x) =

∑n
i=1 Wig(xi)∑n

i=1 Wi
+

∑n
i=1 Wiεi∑n
i=1 Wi

(1.10)

where Wi = Wh(xi − x). By assumption, E[εi] = 0. Thus,

E[ĝ(x)] =

∑n
i=1 Wig(xi)∑n

i=1 Wi

Expanding g(xi) in Taylor series about x, we may deduce that

E[ĝ(x)] = g(x) + g′(x)

∑n
i=1(xi − x)Wi∑n

i=1 Wi

+ g′′(x)

∑n
i=1(xi − x)2Wi

2
∑n

i=1 Wi

+ R (1.11)

where R denotes the remainder term, which can be shown to be of order O(h4), as h → 0.
This expression can be simplified further. In order to proceed, we recall the following

integration property

n−1

n∑

i=1

(xi − x)ℓWh(xi − x) =

∫ 1

0

(y − x)ℓWh(y − x)dy + O(n−1). (1.12)

Using the case where ℓ = 0, we deduce that

n−1

n∑

i=1

Wi = 1 + O(n−1)

whenever x ∈ (h, 1 − h). For x nearer to the boundary of [0, 1], the leading term of this
expansion can be shown to be between .5 and 1.

The cases where ℓ = 1 and ℓ = 2 lead to

n−1
n∑

i=1

(xi − x)Wi = O(n−1)

and

n−1

n∑

i=1

(xi − x)2Wi = h2µ2(W) + O(n−1)

whenever x ∈ (h, 1− h). The first result follows from the symmetry of the kernel. µ2(W)
denotes the second moment of the kernel9, viewed as a probability density function.

9This is the kernel whose bandwidth is h = 1.

1.2. KERNEL REGRESSION 17

Working from (1.11), we can express the bias in ĝ(x) as

B(ĝ(x)) =
h2

2
µ2(W)g′′(x) + O(h4) + O(n−1) (1.13)

If x is closer to the boundary, above integral is of order O(h); the symmetry of the
kernel no longer helps. For such x, therefore, the bias is of O(h). This is the so-called
boundary bias problem of local constant regression. During the 1970’s and 1980’s, many
modifications were suggested to combat this problem. None are as simple and elegant as
the solution provided by local linear regression, a discovery of the mid-1990’s.

Using the same kinds of approximation techniques as for the local constant case, we
can obtain the bias expression (1.11) for local linear regression. However, this expression
can obtained without appealing to the symmetry of the kernel. Thus, the expression holds
for all x ∈ [0, 1]. Thus, local linear regression has a bias of order O(h2) throughout the
interval [0, 1]; there is no additional boundary bias.

Variance

To compute the variance of the Nadaraya-Watson estimator, we may, again, begin with
(1.10). However, this time, the first term plays no role. Taking the variance of the second
term, we obtain

Var(ĝ(x)) =

∑n
i=1 W 2

i σ2

(
∑n

i=1 Wi)2
.

Arguing as before, this can be written as

Var(ĝ(x)) =
n
∫ 1

0
W 2

h (x − y)dyσ2

n2(
∫ 1

0
Wh(x − y)dy)2

+ O(n−1).

A change of variable in the integrands, and approximating gives

Var(ĝ(x)) =
σ2R(W)

nh
+ O(n−1)

where the notation R(W) =
∫

W 2(z)dz is being used.
For points in the interior of [0, 1], we can then show that the MSE for the Nadaraya-

Watson estimator is of the order O(h4 + (nh)−1). Formally minimizing this with respect
to h, we can see that h = O(n−1/5). This implies that the MSE only decreases at rate
n−4/5 as n increases; this is slower than the rate n−1 for estimators like the sample mean
or the slope in simple linear regression.

Similar, but more involved, argumentation leads to the same result for local linear
regression.

Bandwidth selection

The quality of the kernel regression estimate depends crucially on the choice of bandwidth.
Many proposals for bandwidth selection have been made over the last three decades. None
are completely satisfactory. Loader (1999) argues for a choice based on cross-validation,
while Wand and Jones (1995) argue for what is called a direct plug-in choice.

18 CHAPTER 1. NONPARAMETRIC REGRESSION

A direct plug-in bandwidth is based on the minimizer of the asymptotic mean squared
error (or more usually, the mean integrated squared error). A simple calculus argument
leads to an optimal bandwidth satisfying

h5 =
σ2R(W)

n(µ2(W))2(g′′(x))2
.

There are a number of difficulties with this formula. First, σ must be estimated. A number
of possibilities exist: usually, a pilot estimate is obtained and the mean residual sum of
squares is used.10 The bigger difficulty is estimation of g′′(x). This is usually a harder
problem than estimation of g(x) itself. Note, however, that higher order kernel regression

estimators can be used to obtain such estimates – simply read off the β̂2 coefficient estimate
in local cubic regression, for example. The difficulty here is that a different bandwidth
is required to get the best estimate of g′′(x). The best bandwidth depends on higher
derivatives of g(x). Thus, there is an infinite regress; it is impossible to obtain the best
estimate. In practice, a quick and simple bandwidth is used to obtain a high order
derivative estimate, and then the procedure described above is carried out. Wand and
Jones (1995) give details of the procedure together with a discussion of other bandwidth
selectors, including cross-validation. The function dpill() in the KernSmooth package
implements a direct plug-in selector for local linear regression.

1.2.3 Lowess

Cleveland (1979) introduced an alternative form of local polynomial regression which he
termed lowess.11 The name stands for Locally Weighted Scatterplot Smoothing.

The basic idea is that of local polynomial regression where the tricube kernel

W (t) =
70

81
(1 − |t|3)3I[−1,1](t)

is used. This kernel is used because it is very smooth at -1 and 1 (i.e. Wh(t) is smooth at
−h and h.)

The first real difference between lowess and local polynomial regression comes from the
choice of bandwidth. Cleveland proposed a nearest neighbour bandwidth. Take f ∈ (0, 1],
and set r = [nf + .5]. For each predictor value xk, let

hk = |xk − x.|(r).

In other words, hk is the rth order statistic of the sample |xk −x1|, |xk −x2|, . . . , |xk −xn|.
The local polynomial regression problem (at xk) is to minimize

n∑

i=1

(yi −

p∑

j=0

βj(xi − xk)
j)2Whk

(xi − xk)

10Degrees of freedom are computed from the trace of the associated hat matrix.
11It is also called loess, and there are, in fact, R functions with each name.

1.2. KERNEL REGRESSION 19

with respect to β0, β1, . . . , βp. The fitted response value at xk is then ŷk = β̂0.
In this way, one obtains a set of fitted observations (x1, ŷ1), (x2, ŷ2), . . . , (xn, ŷn). In-

terpolation can be used to render a smooth curve through these points.
This procedure is implemented in R. One can use the lowess() function. For example,

consider the beluga nursing data. Here, the time index is V1 and the response is in V2.
The solid curve in the plot of Figure 1.7 was obtained using

attach(beluga)

plot(V1, V2)

lines(lowess(V1, V2, iter=0, f=.2))

0 50 100 150 200

0
10

0
20

0
30

0
40

0
50

0

time

nu
rs

in
g

du
ra

tio
n

Figure 1.7: Lowess fits of the beluga whale nursing data using f = .2. The solid curve was
obtained using local polynomial regression with a nearest neighbour bandwidth without
additional iterations. The dashed curve was obtained with 3 iterations.

Cleveland’s next innovation was to reduce the influence of outliers on the fitted curve.
The residuals

ek = yk − ŷk

can be used to form robustness weights

δi = B
(ei

6M

)
, i = 1, 2, . . . , n

where B(t) = (1 − t2)2I[−1,1](t), the unscaled biweight kernel, and M is the median of
|e1|, |e2|, . . . , |en|.

The local regression is then repeated, but this time minimizing

n∑

i=1

(yi −

p∑

j=0

βj(xi − xk)
j)2δiWhk

(xi − xk).

20 CHAPTER 1. NONPARAMETRIC REGRESSION

Note that this form of weighted least-squares substantially downweights outliers. New
fitted values ŷk can be obtained. The procedure is often iterated a few times.12

The dashed curve in Figure 1.7 was obtained using

attach(beluga)

plot(V1, V2)

lines(lowess(V1, V2, f=.2)) # default iter = 3

One can also use the loess() function in the modreg package. This function can be
used to obtain plots such as those produced with lowess(), using the family=gaussian

option; this invokes the least-squares procedure described above. An M-estimation proce-
dure which is more robust is invoked using the family=symmetric option. The loess()

function has other advantages, including the ability to handle multiple predictors.

1.3 Multiple Predictors

This chapter has concerned itself primarily with the case of a single predictor variable x.
Extensions of both spline and kernel methods to multiple predictor variables is possible.

1.3.1 Spline Methods

Extensions of the regression spline are straightforward in principle. For example, if x and
w are predictors and y is the response, we might consider a model of the form

y =

p1∑

j=1

βjBj(x) +

p2∑

j=p1+1

βjBj(w) + ε (1.14)

where the Bj(.)’s denote B-spline functions. Knots have to be chosen along both the x
and w axes; alternatively, one could choose equally spaced knots. Interaction terms of the
form

∑
j 6=k

∑
βjkBj(x)Bk(w) could also be included. Note that the number of parameters

to estimate quickly increases with the number of knots. This is an example of the so-called
‘curse of dimensionality’.

As an example, we consider data on ore bearing samples listed in the book of Green
and Silverman (1994). The response variable is width, and this is measured at coordinates
given by t1 and t2. The following lines can be used to fit these data.

library(splines)

ore.lm <- lm(width ~ bs(t1, df=5, degree=3) +

bs(t2, df=5, degree=3), data= orebearing)

The usual functions such as plot() and predict() may be used to analyze the output.
Note that we are assuming no interaction between t1 and t2, an unrealistic assumption

for such data. To check this assumption, we can construct a conditioning plot as in
Chapter 7. This plot is pictured in Figure 1.8. The plot clearly shows the need for a
model which includes an interaction term.

12The default for the lowess() function is iter=3.

1.3. MULTIPLE PREDICTORS 21

library(lattice)

t2Range <- equal.count(orebearing$t2, number=3)

xyplot(residuals(ore.lm) ~ t1 | t2Range,

data=orebearing, layout=c(3,1), type=c("p","smooth"))

t1

re
si

du
al

s(
or

e.
lm

)

−4

−2

 0

 2

 4

 6

−20 0 20 40 60 80

t2Range t2Range

−20 0 20 40 60 80

−20 0 20 40 60 80

t2Range

Figure 1.8: Conditioning plots for spline regression applied to the ore bearing data.

It is also possible to extend the smoothing spline to obtain the so-called thin-plate
spline. The essential idea is to penalize the least-squares regression spline using a term
which is large if second partial derivatives are large. The penalty term is multiplied by a
smoothing parameter α. 13

An example of a thin-plate spline fitted to the ore bearing data is plotted in Figure
1.9. Width of ore bearing samples is plotted against the planar coordinates corresponding
to their locations.

13A crude version of the thin plate spline is coded in the source file thinplatespline.R.

22 CHAPTER 1. NONPARAMETRIC REGRESSION

−20 0 20 40 60 80

−
60

−
40

−
20

0

t1

t2

Figure 1.9: Contours of a thin-plate spline fitted to the ore bearing data using α = 10.
The solid black dots correspond to the locations of the ore samples.

Here is the code to obtain the figure:

source("thinplatespline.R")

t1new <- rep(seq(-10,80,length=100),100)

t2new <- rep(seq(-50,0,length=100),rep(100,100))

attach(orebearing)

widthnew <- thinplatespline(cbind(t1,t2), width, x.new =

cbind(t1new,t2new), alpha=10)

plot(t1, t2, pch=16)

contour(seq(-10,80,len=100),seq(-50,0,len=100),

matrix(widthnew,nrow=100), add=TRUE)

1.3.2 Additive Models

In a sense, (1.14) can be seen as a simple example of an additive model. It can be easily
fit using the lm() function. When working with kernel regression, it is also possible to
use additive models such as

y = β0 + g1(x) + g2(w) + ε.

1.3. MULTIPLE PREDICTORS 23

Fitting these kinds of models requires the use of the backfitting algorithm which is as
follows:

1. Set β̂0 = ȳ.

2. Obtain an initial estimate of ĝ2(w) by applying univariate nonparametric regression
estimation to {(w1, y1), (w2, y2), . . . , (wn, yn)}.

3. Do the following until convergence:

(a) Set z1i = yi − β̂0 − ĝ2(wi), for i = 1, 2, . . . , n.

(b) Estimate g1(x) by applying univariate nonparametric regression estimation to
{(x1, z11), (x2, z12), . . . , (xn, z1n)}.

(c) Set z2i = yi − β̂0 − ĝ1(xi), for i = 1, 2, . . . , n.

(d) Estimate g2(w) from {(w1, z21), (w2, z22), . . . , (wn, z2n)}.

This back-fitting algorithm is an example of the Gauss-Seidel iteration for solving large
linear systems of equations. Since Gauss-Seidel is convergent, the back-fitting algorithm
is also convergent.

Note that any smoothing method can be used to do the univariate nonparametric re-
gression at each stage. The gam() function in the mgcv package does additive modelling
using smoothing splines at each iteration. The following code demonstrates the elemen-
tary usage of the gam() function for the ore bearing data. Figure 1.10 is similar to the
conditioning plots obtained earlier, and Figure 1.11 demonstrates the basic usage of the
visgam() function to obtain a perspective plot of the fitted surface.

library(mgcv)

ore.gam <- gam(width ~ s(t1) + s(t2), data=orebearing)

plot(ore.gam, pages=1) # this invokes plot.gam() which

differs from plot.lm()

visgam(ore.gam) # produces a perspective plot

24 CHAPTER 1. NONPARAMETRIC REGRESSION

−20 0 20 40 60 80

−
8

0

t1

s(
t1

,4
.4

2)

−60 −40 −20 0
−

8
0

t2

s(
t2

,2
.4

5)

Figure 1.10: Conditional plots for the ore bearing data using the plot.gam() function.

t1

t2

linear predictor

Figure 1.11: A perspective plot of an additive model fit to the ore bearing data.

1.4 Further reading

1. de Boor, C. (1978) A Practical Guide to Splines. Springer, New York.

2. Cleveland, W. (1979) Robust locally weighted regression and smoothing scatterplots.
J. Amer. Statist. Assoc. 74 829–836.

3. Eilers, P.H.C. and Marx, B.D. (1996) Flexible smoothing with B-spline and penalties
(with discussion). Statistical Science 11 89–121.

4. Fan, J. and Gijbels, I. (1996) Local Polynomial Modelling and Its Applications.

Chapman and Hall, London.

1.5. EXERCISES 25

5. Green, P. and Silverman, B. (1994) Nonparametric Regression and Generalized Lin-

ear Models. Chapman and Hall, London.

6. Hastie, T. and Tibshirani, R. (1990) Generalized Additive Models. Chapman and
Hall, London.

7. Loader, C. (1999) Local Regression and Likelihood. Springer, New York.

8. Nadaraya, E.A. (1964) On estimating regression. Theory of Probability and its

Applications. 10 186–190.

9. Simonoff, J. (1996) Smoothing Methods in Statistics. Springer, New York.

10. Wand, M. and Jones, M.C. (1995) Kernel Smoothing. Chapman and Hall, London.

11. Watson, G.S. (1964) Smooth regression analysis. Sankhyā 26 359–372.

1.5 Exercises

1. Consider the data set

x y

-2 -1

-1 1

0 2

1 4

2 -2

and the model
y = β0 + β1x + β2(x − 1)+ + ε

where ε ∼ N(0, σ2) and the observations are mutually independent.

(a) Estimate all of the parameters of the model (including σ2).

(b) Calculate a 95% confidence interval for β2. Is there sufficient evidence to con-
clude that the knot at x = 1 is required?

2. Assuming a boundary of -2 and 2, obtain formulae for three linear B-splines asso-
ciated with a knot at x = 1. Sketch their graphs.

3. Use the B-splines obtained in exercise 2 to fit the data of exercise 1. Compare the
estimate of σ2 with that obtained earlier.

4. Assume that B0,1(x) ≡ 0. Obtain formulae for the four quadratic B-splines associ-
ated with a knot at x = 1. Check that these functions are all differentiable at −2, 1
and 2. Sketch graphs of these functions.

5. Check your results to exercises 2 and 4 by using the matplot() and bs() functions.

26 CHAPTER 1. NONPARAMETRIC REGRESSION

6. Using a uniform kernel and a bandwidth of 2.0, fit a local constant regression to
the data of exercise 1, evaluating the estimator at the points -1, 0 and 1. Compare
with the fitted values from the linear spline.

7. Suppose the true regression function is

g(x) = −x2 + 2x + 3.

(a) Evaluate the asymptotic bias for the local constant regression assuming that
the evaluation is far enough from the boundary to be unaffected. You may
assume that a uniform kernel is being used.

(b) Evaluate the asymptotic variance, assuming σ2 = 6.

(c) Determine the bandwidth that minimizes the asymptotic MSE at x = 0.

8. The Epanechnikov kernel is given by

3

4
(1 − x2)1|x|≤1.

(a) Show that for local constant regression evaluated at a point x, the AMSE-
optimal bandwidth using the Epanechnikov kernel is (10/3)1/5 times the AMSE-
optimal bandwidth for the uniform kernel.

(b) Show that the minimal asymptotic MSE at the point x, using the Epanechnikov
kernel, is 94.3% of the minimal asymptotic MSE at the same point, using the
uniform kernel.

(c) Make similar comparisons between the normal14 and Epanechnikov kernels.
Which kernel gives the most efficient estimates? Does the choice of kernel
make a big difference?

(d) Suppose the second derivative of the regression function at x is over-estimated
by a factor of 1.5. What effect would this have on the estimate of the optimal
bandwidth for local constant regression at x. Assuming g′′(x) = σ = 1, calcu-
late the asymptotic MSE at x using the optimal bandwidth and the estimated
bandwidth, using an Epanechnikov kernel.

14W is standard normal here.

