
Architecture Support for Task Out-of-Order
Execution in MPSoCs

Chao Wang,Member, IEEE, Xi Li, Junneng Zhang, Peng Chen, Yunji Chen,

Xuehai Zhou,Member, IEEE, and Ray C.C. Cheung,Member, IEEE

Abstract—Multi-processor system on chip (MPSoC) has been widely applied in embedded systems in the past decades. However, it

has posed great challenges to efficiently design and implement a rapid prototype for diverse applications due to heterogeneous

instruction set architectures (ISA), programming interfaces and software tool chains. In order to solve the problem, this paper proposes

a novel high level architecture support for automatic out-of-order (OoO) task execution on FPGA based heterogeneous MPSoCs. The

architecture support is composed of a hierarchical middleware with an automatic task level OoO parallel execution engine.

Incorporated with a hierarchical OoO layer model, the middleware is able to identify the parallel regions and generate the sources

codes automatically. Besides, a runtime middleware Task-Scoreboarding analyzes the inter-task data dependencies and automatically

schedules and dispatches the tasks with parameter renaming techniques. The middleware has been verified by the prototype built on

FPGA platform. Examples and a JPEG case study demonstrate that our model can largely ease the burden of programmers as well as

uncover the task level parallelism.

Index Terms—Middleware, architecture support, MPSoC, data dependencies, FPGA, out-of-order execution

Ç

1 INTRODUCTION

HIGH performance reconfigurable computing technol-
ogy has emerged and widely applied during the past

decades. The remarkable evolution of heterogeneous multi-
core research paradigms and the invasion of reconfigurable
hardware accelerators have made it possible to integrate
hundreds of cores into the current petaflop supercomputing
machines. The combination of reconfigurable computing
and multi-core technologies has been regarded as one of the
most promising future processor architectures [1], [2]. How-
ever, critical issues beyond raw computational capabilities
are becoming increasingly important, such as programma-
bility, flexibility, scalability, power consumption and so on.

This scenario and raising demands has led to the emer-
gence of FPGA based multiprocessor system on chip
(MPSoC) composed of a variety of heterogeneous computa-
tional units. It has been widely acknowledged that the road-
map to the next generation of exascale computers will bring
a tremendous speed up in various applications through

integration of multi-core processors and hardware accelera-
tors, like graphic processing units (GPUs) or FPGAs [2].

Of the cutting-edge GPU and FPGA based research
approaches, reconfigurable heterogeneous hardware accel-
erators can achieve both high performance and promising
flexibility. On one hand, since numerous processors are
being integrated into single chip, reconfigurable multi-
processor system-on-chip can provide increasingly speed-
ups to diverse embedded systems and applications. On the
other hand, the involvement of reconfigurable hardware
platform like FPGA and CPLD could efficiently facilitate
researchers to decrease the embedded system design time
and space costs, as well as to shorten the time-to-market
(TTM) simultaneously.

However, the side effect of FPGA based MPSoC has been
exposed like a double-edged sword. Programmability for
MPSoC is still posing serious challenges in particular. Since
the hardware is adapted to fit in the applications, program-
ming models and middleware architecture support should
be invisibly filling the gaps between different architectures.

Up to now, considerable amount of literatures on hybrid
programming models have been conducted at task level.
For instances, OpenMP [3], MPI, Intel’s TBB, OpenCL [4]
and Cilk [5] are very successful programming paradigms.
Recently, CUDA is becoming very popular in GPU based
programming models. However, a major weakness of these
approaches is the inadequate automatic parallelization
degree. In particular, task mapping and scheduling plans
are operated manually, which means the achieved speedup
is largely dependent on the experiences of programmers.
Meanwhile, most of these works focus on either the sym-
metric multiprocessors or GPU based acceleration engines,
which cannot be applied to reconfigurable heterogeneous
MPSoC scenarios directly.

Alternatively, there have been creditableMPSoC program-
ming models devoted to specific hardware architectures,

� C. Wang, X. Li, and P. Chen are with the Department of Computer Sci-
ence, University of Science and Technology of China, Hefei, Anhui, China.
E-mail: saintwc@mail.ustc.edu.cn, llxx@ustc.edu.cn,
blueardour@gmail.com.

� J. Zhang is with the University of Science and Technology of China, Hefei
230027, Anhui, China. E-mail: zjneng@mail.ustc.edu.cn.

� Y. Chen is with the State Key Lab of CARCH, CAS, Beijing, 100190,
China. E-mail: cyj@ict.ac.cn.

� X. Zhou is with the Suzhou Institute of University of Science and Tech-
nology of China, Suzhou 215123, China. E-mail: xhzhou@ustc.edu.cn.

� R.C.C. Cheung is with the Electrical Engineering Department, City Uni-
versity of Hong Kong, Kowloon, Hong Kong.
E-mail: r.cheung@cityu.edu.hk.

Manuscript received 30 Dec. 2012; revised 31 Jan. 2014; accepted 16 Mar.
2014. Date of publication 8 Apr. 2014; date of current version 8 Apr. 2015.
Recommended for acceptance by Y. Pan.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2014.2315628

1296 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 5, MAY 2015

0018-9340 � 2014 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

such as StarSs [6] and CellSs [7]. Although both approaches
provide superscalar or renaming techniques allowing tasks
out-of-order (OoO) execution, the constrained architecture
avoids them to be directly applied to the reconfigurable
MPSoC architectures. As the system complexity grows, the
problem of how to design a flexible programming model is
becoming increasing challenging. Until now the problem has
not been completely figured out yet.

To address the above problems, in this paper we present
an architecture support for heterogeneous multiprocessors
with hierarchical middleware for OoO execution. We
intend to integrate a sound framework that is composed of
a hierarchical layer model, an execution flow, an OoO
scheduler with a mapping scheme. We claim following
contributions:

1) We present a hierarchical middleware on reconfig-
urable MPSoCs, from which programmers are no
longer required to gain hardware implementation
and task partitioning plans. In order to analyze the
annotation based codes, we propose an execution
model that translates sources programs to internal
functions for parallel execution.

2) We propose an OoO scheduling mechanism that
checks the data dependencies, renames the parame-
ters, and issues the tasks automatically when the
tasks are ready. The renaming technique is applied
from traditional instruction level to task level,
regarding each processor (IP core) as a function unit.

3) We introduce an adaptive mapping scheme to map
the tasks to target function units at runtime. When
hardware architecture is reconfigured, tasks can be
remapped automatically without the rebooting.

4) We implement the MPSoC prototype on Xilinx
FPGA. EEMBC benchmarks (e.g., IDCT, AES, DES
and JPEG) are implemented in both software and
hardware. Multiple Microblaze processors are inte-
grated as scheduler and computing processors. The
prototype platform can be used for evaluation and
verification for task partitioning scheme, scheduling,
interconnect, etc.

The structure of the paper is decomposed as the follow-
ing. In Section 2 we outline the OoO motivation and review
the literatures related to this work. Section 3 describes a typ-
ical reconfigurable MPSoC architecture and the hierarchical
middleware. Section 4 presents the features implemented in
the runtime library, including detailed OoO task schedul-
ing, mapping scheme and synchronization. Section 5 illus-
trates the FPGA prototype with experimental results.
Finally, we conclude the paper in Section 6.

2 RELATED WORK

2.1 OoO Task Execution

In order to illustrate the motivation of OoO task execution,
we first present how the tasks are running on the MPSoC
hardware architectures in parallel. We inherit the token
based description of dataflow execution model in [8], which
is extended to a general heterogeneous multicore computing
scenario in this paper. Generally, dataflow execution model
handles inter-task dependences using tokens to manifest
production and availability of I/O parameters. Based on the
token based technique, we make two essential enhance-
ments. First we map tokens with parameters instead of
memory addresses, to match the abstraction for functional
source and destination. Second, we assign each function
with multiple read tokens and a single write token, to man-
age both production and consumption of parameters.

When the execution encounters a task to be considered
for dataflow execution, it requests read (write) tokens for
exclusive guarantee in the function read (write) set; it is
ready for execution only after it has acquired all its requisite
tokens. Similarly, upon completion, it releases the tokens
which are then spawned to the waiting function(s) if neces-
sary. When a pending function has acquired its requisite
tokens, it can be offloaded and submitted for execution
immediately.

We illustrate the execution model with the simple
sequential program example of Fig. 1a, which invokes the
two functions T and G within a loop, as well as a head task
H in prior to the loop and a tail task E executed after the
loop. Fig. 1b describes an example dynamic sequence of

Fig. 1. (a) Example Pseudocode that invokes functions H, T, G and E, e.g., the task T:{wr_set_T} {rd_set_T} reads {rd_set_T} tokens and generates
{wr_set_T} tokens during execution. (b) Dynamic loop unrolling of the functions H, T, G and E in the program order, with the read/write data set of
each invocation. (c) Dataflow graph of the dynamic function stream, in which RAW, WAW and WAR inter-task dependencies are presented with het-
erogeneous processors. (d) Dataflow execution schedule of the function stream, under the architecture scenario of three processors.

WANG ET AL.: ARCHITECTURE SUPPORT FOR TASK OUT-OF-ORDER EXECUTION IN MPSOCS 1297

invocations of T and G after the loop is unrolled during exe-
cution, along with their dynamically computed write and
read token sets generated in the program. Fig. 1c presents
the data dependence between the functions. For example,
T2 writes objects A and E, and thus it has a WAR depen-
dence (solid arrows) on T1 and G1, which reads object A as
an input. Likewise G2 has a RAW dependence (dashed
arrows) on G1, and T3 has a WAW (dotted arrows) depen-
dence on G2. These dependences must be preserved if the
dynamic dataflow is to maintain the sequential execution of
the static program, otherwise the correct results of the OoO
execution cannot be guaranteed. Fig. 1d introduces the par-
allel execution model of the sequential code on different
processors. The task H and E standard for the synchroniza-
tion barriers before and after the loop iteration.

The above example illustrates how the loop based tasks
should be analyzed and mapped to general heterogeneous
multicore situations for OoO execution, while in the follow-
ing sections, we will describe how the OoO mechanism is
guaranteed in the FPGA based MPSoC scenario, especially
for massive parallel computing machines.

Finally, the summary of state-of-the-art parallel execu-
tion engines is listed in Table 1. Although these approaches
provide OoO engine by superscalar or renaming engines,
they do not focus on the adaptive mapping for general
FPGA platform with reconfigurable IP cores, therefore
the flexibility across different architectures is still worth
pursing.

2.2 Related Study

Parallel task execution models have been studied for paral-
lel computing machines during past decades. First of all,
task-based parallel programming model are quite popular
to enhance ILP to TLP, such as OpenMP [3], MPI, Intel’s
TBB, OpenCL [4] and Cilk [5]. Most of these state-of-the-art
programming paradigms focus on symmetric multiproces-
sors to significantly reduce the workload of programmers.

One of the major drawbacks of these approaches is that
automatic parallelization is not fully supported, which
means programmers are required to handle the task map-
ping and scheduling schemes manually, therefore the
speedup achieved is largely confined by the inadequate
experiences of programmers. As a side effect, this could
also increase the burden of programmers with synchroniza-
tion and task scheduling on the symmetric multiprocessor
architectures. For example, OpenMP [3] mainly depends
on mutex lock mechanism to achieve synchronization
between threads, but mutex locks are managed by the
programmer. Other parallel programming paradigms such
as MPI also needs programmer to find the potential task
parallelism and synchronization explicitly, which not only
increases the difficulty of multi-core programming com-
plexity, and also led to unsatisfactory task parallelism due
to limited experience of programmers. In addition, MapRe-
duce, Intel Ct [23], and Intel CnC [24] are approaches facili-
tating high-level programming paradigms through its
inherent support of task-based dataflow execution.

Meanwhile, compared to symmetric processors, hetero-
geneous processors are becoming increasingly dominat-
ing in embedded and high performance computing
domains. Of the cutting-edge researches, FPGA based
MPSoC is regarded as on of the most promising heteroge-
neous processor architectures [1]. With the increasing
popularity of reconfigurable computing technology and
MPSoC platform, parallelism is shifting from instruction
level to task level. One approach is to utilize reconfigura-
ble FPGA platform and integrate acceleration engines,
such as Chimaera [25], Garp [26], OneChip [27]and other
function units [28], [29], [30]. Moreover, there are several
creditable general FPGA research platforms, such as
RAMP [31], Platune [32] and MOLEN [33]. These studies
focus on providing reconfigurable FPGA based environ-
ments with software tool chains to construct application
specific MPSoC.

TABLE 1
Summary for State-of-the-Art Parallel Execution Engines on FPGA

Types Typical Strength Weakness

General parallel program-
ming model (No OoO)

OpenMP [3] CnC MapRe-
duce OpenCL [4] Cilk [5]

General model for CMP pro-
cessors

Bring burden to pro-
grammers

Specific parallel program-
ming model (With OoO)

StarSs [6], CellSs [7], Oscar [9] Support automatic OoO exe-
cution

Applied only to CellBE
architecture and SMP servers

Coarse Grained Task Level
Parallelism (No OoO)

CEDAR [10], MLCA [11],
Multiscalar [12], Trace [13],

Perform well for traditional
superscalar machines, run

OoO not supported, pro-
grammers handle the task

Dataflow Based OoO Execu-
tion Model (No OoO)

FlexCore [21] Tasks running as instructions OoO not supported

Dataflow Based OoO Execu-
tion Model (with OoO)

TaskSuperscalar[19] Support OoO automatic
parallel execution

Not applicable to FPGA
with reconfiguration

DSP [20] With register renaming
technologies of Tomasulo

Limited to DSP architec-
tures

OoOJava [22] An OoO compiler for Ja-
va runtime

Not applicable to hard-
ware execution engines

Dataflow [8] Race-free and determi-
nate parallel execution

Not applicable to FPGA
with reconfiguration

1298 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 5, MAY 2015

Alternatively, products and prototypes of processor are
designed to increases TLP with coarser grained parallelism,
such as CEDAR [10], MLCA [11], Multiscalar [12], Trace
Processors [13], IBM CELL [14], RAW Processor [15], Intel
Terascale and Hydra CMP [16]. These designs present
thread-level or individual cores which can split a group of
applications into small speculatively independent threads.
Some other works like TRIPS [18] and Wave Scalar [17]
combine both static and dynamic dataflow analysis in order
to exploit more parallelism.

To attack the programming wall problem with the tre-
mendous invasion of chip integration, MPSoC program-
ming models are taken into consideration, such as Oscar
[9], StarSs [6] and CellSs [7]. With the help of the MPSoC
programming paradigms, automatic parallelization with
task level scheduling methods are also been motivated to
operate high level parallelism such as [34], [35], [36], and
[37]. In order to run tasks OoO, inter-task data dependency
analysis and synchronization problem has posed a signifi-
cant challenge for coarse-grained parallelization. Tradi-
tional algorithms, such as Scoreboarding and Tomasulo
[38], explore instruction level parallelism (ILP) with multi-
ple arithmetic units, which can dynamically schedule the
instructions for OoO execution. Task Superscalar [19] pro-
poses abstraction of OoO superscalar pipelines regarding
processor as function units. [20] provides a modified ver-
sion of Tomasulo [38] scheme to DSP based processor
architectures to perform OoO task execution. FlexCore [21]
presents a hybrid process architecture using an on-chip
reconfigurable fabric (FPGA) to support runtime monitor-
ing and bookkeeping techniques. Hyperprocessor [39] man-
ages global dependencies using a universal register file.
OoOJava [22] is a compiler-assisted approach that leverages
developer annotations along with static analysis to provide
an easy-to-use deterministic parallel programming model.
The method is based on task annotations that instruct the
compiler to consider a code block for OoO execution. [8] is
a dataflow execution model that achieves parallel execution
of statically-sequential programs. It dynamically parallel-
izes the execution of suitably-written sequential programs,
in a dataflow fashion on multiple processing cores.

Finally, the summary of state-of-the-art parallel
execution engines is listed in Table 1. Although these
approaches provide OoO engine by superscalar or renam-
ing engines, they do not focus on the adaptive mapping
for general FPGA platform with reconfigurable IP cores,
therefore the flexibility across different architectures is still
worth pursing.

3 ARCHITECTURE AND EXECUTION MODEL

The OoO middleware proposed in this paper is intended to
provide an efficient middleware support between hardware
and high level user applications, taking the benefit of the
general MPSoC hardware platform with reconfigurable
abilities. In this section we propose the hardware architec-
ture and the execution model for the middleware support.

3.1 Hardware Platform

For most heterogeneous MPSoC architectures, application
specific instructionprocessors (ASIP),digital signalprocessor

(DSP), and intellectual property (IP) cores are introduced to
uncover task level parallelism (TLP). Through the common
feature among those platforms, Fig. 2 illustrates a heteroge-
neous MPSoC hardware platform constructed in FPGA,
which consists of multiple general purpose processors
(GPPs), DSP/ASIP processors, and a variety of heteroge-
neous IP cores. The responsibilities of the components are
as follows:

1) Scheduler processor is employed to operate task
scheduling and provides programming interface to
users. At runtime, each task is mapped and then dis-
tributed to certain processor or IP core for execution.
Scheduler also keeps the running status of process-
ors and IP cores.

2) Computing processors provide a runtime environ-
ment for software tasks. In general, computing pro-
cessors can execute different types of software tasks.
Each processor provides software runtime function
library for different applications.

3) Hardware IP cores are responsible for a specific kind
of tasks to achieve acceleration. In addition, IP cores
can be reconfigured and customized according to
application demands. Specific tasks can be also
spawned to DSP/ASIP or IP cores for hardware
acceleration. Each hardware module can execute
only limited types of tasks for accelerations, due to
the RTL functional implementations.

4) Interconnect modules between schedulers, comput-
ing processors and hardware blocks are in charge of
data communication. In this paper, we setup our
experiments and simulation on a star network based
on Xilinx peer to peer FSL [40] channels. Scheduler is
connected to every processor or IP core with a pair
of FSL bus links. All the interfaces are packaged into
unified FSL manner for data communication. Note
the interconnect structure can be replaced by other

Fig. 2. The experimental MPSoC hardware platform constructed on
Xilinx FPGA, the scheduler is connected to multiple computing process-
ors, IP cores, and peripherals via on-chip interconnection.

WANG ET AL.: ARCHITECTURE SUPPORT FOR TASK OUT-OF-ORDER EXECUTION IN MPSOCS 1299

topologic modules, such as crossbar, mesh, hierar-
chical bus or ring architectures.

5) Memory and peripherals are integrated to main-
tain local data storage and peripherals, such as
DDR DRAM controller, Ethernet controller, system
ACE controller, UART, timer and interrupt con-
troller. All these modules are connected to sched-
uler processor with bus-based interconnects, such
as CoreConnect Processor Local Bus (PLB).

3.2 OoO Middleware Hierarchical Model

Throughout this paper, tasks refer to dynamic instances cre-
ated when scheduler spawns a piece of code to computing
GPPs or IP cores. Moreover, tasks are regarded as abstract
instructions, and each IP core is treated as a dedicated func-
tional unit for a specific hardware task. Fig. 3 illustrates the
middleware hierarchical architectural model, which con-
sists of four layers in general.

3.2.1 Application Management Layer

The middleware employs user runtime libraries to provide
an execution environment for tasks. Application program-
ming interfaces (APIs) show a high-level view of the inter-
nal implementations. After definition, the interfaces should
be kept consistent after hardware reconfiguration.

Moreover, a runtime analysis module is integrated to
support application monitoring and bookkeeping techni-
ques. Also, the hotspot obtained by profiling indicates the
parts executed for high frequencies and can be used to
guide IP configurations.

3.2.2 Task Partitioning and Scheduling Layer

Task partitioning and schedulingmethods play a vital role in
architectural supports. Before tasks are offloaded to IP cores,
OoO middleware should identify the target processor to run
current task, and also decidewhen the task can be issued.

(1) Task to core mapping. Compared to state-of-the-art
middleware and operation systems, this paper utilizes
state-of-the-art dynamic partial reconfiguration support at
runtime. Static core modules and reconfiguration modules
(RMs) are implemented separately, of which only RMs are

reconfigured at runtime to reduce the bitstream download-
ing overheads. In task partition and scheduling layer, recon-
figuration core libraries are integrated. After IP cores are
reconfigured, tasks mapping and scheduling strategies
need to be reconsidered. Therefore a task-to-core table is
employed to identify the target IP core, as is described in
Fig. 4. The table maintains a mapping of tasks to cores to vir-
tualize the selection of the destination core. Each table entry
contains the task ID currently running on that core as well
as a count of the number of issued tasks destined for that
core. When new an IP core is deployed, the table elements
will be flushed and updated.

When a task is issued, it obtains the core currently
assigned to its destination core from the table and stores its
results to the appropriate output queue upon completion. A
side effect of this table based approach is that instructions
will not issue to the fabric if the destination core is not avail-
able. This prevents the producing task from filling up the
fabric if the consumer is not present. Even with the table,
however, spawned tasks could accumulate in the fabric if
the current task forces are switched out while data is in
flight to it, which would require the consumer to be
switched back into the same core to receive the values. To
prevent this situation, the task-to-core mapping table main-
tains a count of the number of in-flight tasks destined for
each core. On a request to switch out, the scheduler checks
the number of in-flight tasks bound for its core. If this is
greater than zero, the fabric is blocked from accepting any
new tasks destined for that core and the core continues to
execute until the in-flight counter reaches zero. At this point
the application can be stalled and the fabric unblocked.

For each IP core, the specific task execution time,
speedup, area cost and power consumption information are
also maintained by scheduler. The information will assist
scheduler to make task partition decisions and to achieve
better load-balancing status and higher throughputs. Since
FPGA is an area-constrained platform, different IP cores are
competing for the limited hardware resources. For task
scheduling, tasks are also considered to be arranged in
sequences, which should improve the throughput as well as
FPGA area efficiency.

(2) Barrier synchronization. Barriers are one of the most
common synchronization operations. However, with a typi-
cal memory-based implementation, the overhead of execut-
ing a barrier can be significant, especially as the number of

Fig. 3. High-level hierarchical model is composed of four layers:
application layer, task scheduling layer, driver layer and communication
layer.

Fig. 4. Task to Core Table and Barrier Table, the former table keeps the
record of which task is mapping to which core, while the later operates
the synchronization between different computational tasks.

1300 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 5, MAY 2015

cores increases. This overhead prevents the use of barriers
at fine granularities. In cases where a barrier is followed by
a serial function that is performed by one of the tasks and
the output communicated to all participating tasks, the
scheduler may directly synthesize the function into the fab-
ric with the output communicated to the participants’ out-
put parameters.

To implement barriers for synchronization, a barrier
table is integrated to ensure that all the returning tasks
must not be allowed to issue to the fabric until all partici-
pating cores have arrived at the barrier, as is presented in
Fig. 4. To achieve this, each core participating in the bar-
rier loads some value(s) into its input queue. Once the
loads from all of the cores have reached the head of their
respective input queues and all tasks have indicated
arrival at the barrier. The Barrier Table also determine
that all tasks have arrived at the barrier, with information
related to each active barrier. Each table contains as many
entries as cores attached to a PE cluster, which includes
both general processors (denoted in central white block),
and heterogeneous accelerators (described in coloured
blocks). The table keeps track of the total number of tasks,
the number of arrived tasks, and the cores that are partici-
pating in the barrier. The number of arrived tasks and
participating cores are updated whenever a task arrives,
meanwhile the total and arrived task counts are com-
pared to determine when to issue a task. In a system with
multiple PE clusters, a dedicated bus communicates bar-
rier updates among clusters. The bus transmits the barrier
ID as well as the associated application ID. All tasks par-
ticipating in a barrier must be actively running in order
for all input data to be available. Each table entry main-
tains a list of the IDs of the local tasks that are participat-
ing in the barrier as well as a bit indicating if they are
actively running. If a barrier is ready to be released but
not all participating tasks are active, the scheduler con-
troller triggers an exception to switch the missing tasks
back in. Once all tasks are available, the barrier can
proceed.

3.2.3 Driver and I/O Layer

In order to utilize the hardware resources integrated in
FPGA platform, drivers for peripherals and memory sys-
tems are implemented. Similar to devices drivers of a gen-
eral operating system, we introduce following modules for
prototype demonstration: Interconnect driver is used to
allow applications transfer data and control messages
between microprocessor and IP cores, through buses or net-
work-on-chip (NoC) infrastructures. File system driver is
utilized to provide I/O access to the files. Local static and
partial configuration bitstreams are also stored into file sys-
tems. When task execution is finished, the results are
returned with interrupt signals. Peripherals such as UART
and timer are integrated for user debugging. Reconfigura-
tion controller manipulates the software and IP libraries for
function units’ replacement.

Corresponding to reconfiguration features, software and
IP libraries are introduced at this level. Software libraries
include functions to be executed locally, while IP libraries
consist of back-up IP cores ready to be integrated.

3.2.4 Communication Interfaces Layer

The communication interfaces layer is in charge of data
transmission between middleware and reconfigurable
hardware platform. Generally there are three kinds of
primitives: the unified software interface (USI), unified
hardware interface (UHI), and unified reconfiguration
interface (URI): USI primitive is employed when the infor-
mation in transferred between two microprocessors. USI is
composed of a series of function in libraries. UHI primitive
is introduced to model the communication between micro-
processor and hardware IP cores. Interrupt controller is
employed in UHI to detect interrupt requests from inter-
connections. URI primitive is used only for IP reconfigura-
tion. Reconfiguration controller in driver layer is utilized
by URI to switch the partial bitstream at runtime.

3.3 General Execution Flow

Fig. 5 illustrates the task execution flow model. The entire
task execution flow is divided into following four stages:

3.3.1 Variable Allocation and Renaming Stage

Similar to task superscalar [41], a task-generating thread
sends tasks to the variable renaming stage for dependency
decoding. Tasks are represented as do_T_adder (�out,�in),
in which �in is the start address of input array where stores
all the input operands, while �out indicates for outputs
array. In order to detect data hazards automatically, the
scheduler needs to collect all the operands for each issued
task. However, we can only keep the limited operands
instead of infinite user-defined variables (In most program-
ming models, users are allowed to use any operands as they
want). Therefore each task operand requires for a table
entry allocation. If the table is not full yet, the variable will
be renamed to an internal variable implicitly. The internal
variable will live for the whole lifecycle of the task execu-
tion. Furthermore, changing numbers of operands is sup-
ported in our programming model. As �in and �out indicate
the start of the operands array, each operand inside the
array will be renamed to a fixed variable implicitly.

3.3.2 Task Partitioning Stage

Before tasks are sent to computing processors, the scheduler
must decide which task runs on which function unit, and

Fig. 5. High-level view of execution flow includes four stages: variable
allocation and renaming, task partition, execution and synchronization.

WANG ET AL.: ARCHITECTURE SUPPORT FOR TASK OUT-OF-ORDER EXECUTION IN MPSOCS 1301

also when the task is be issued. These two questions are
solved by task partitionmethods and scheduling algorithms.

On one hand, for task partition, a task-to-processor table
is employed to identify the target processor. The table main-
tains a mapping of tasks to cores to virtualize the selection
of the destination core. Each table entry contains the task ID
currently running on that core as well as a count of the num-
ber of issued tasks destined for that core. In most cases, IP
core can accelerate task executions by specialized hardware
logic or circuit design. So this paper utilizes a greedy strat-
egy: if a vacant idle hardware function unit exists, the task
will be sent to hardware; or else, task will be sent to soft-
ware processor. However, in some cases, this method can-
not provide an optimal partition result, therefore the
method can be easily replaced by other algorithms.

On the other hand, potential inter-task dependencies
need to be exploited to avoid data hazards from dramati-
cally reduces the task level parallelism. Task scheduling
mechanisms are employed to detect data hazards (RAW,
WAW and WAR), and further for out-of-order task execu-
tion. In this framework, we tentatively apply both Score-
boarding and Tomasulo algorithms to task level. Of the two
approaches, Scoreboarding can obtain shorter scheduling
overheads, but the WAW tasks can only run in sequences.
Meanwhile, Tomasulo algorithm can eliminate WAW data
hazards by register renaming.

Additionally, benefiting from current dynamic partial
reconfiguration supports, IP cores can be dynamically
reconfigured at runtime. After IP cores are reconfigured, the
task-to-processor table structures will be updated.

3.3.3 Task Execution Stage

The computing processor begins execution automatically
when all the operands are received. Based on the hardware
interconnect, results are returned through interrupts. One
interrupt controller is integrated to detect results interrupt
request and update the task variables. Since results from
different tasks may be returned at the same time, a first-
come-first-serve (FCFS) policy is used to deal with inter-
rupts, and no interrupt preempt is supported.

3.3.4 Synchronization

The synchronization checks for inter-task data dependen-
cies, and make sure all tasks are returned in-order. The
cases of normal result-writing occur when there are no
WAW or WAR hazards between current task and its prede-
cessor tasks. Therefore, the scheduler consists of a design
flow including in-order issue and out-of-order completion.

4 RUNTIME OOO SCHEDULING

Based on the hierarchical and execution flow, the most sig-
nificant part is the scheduling scheme that to spawn the
tasks out-of-order by analyzing the inter-task dependencies.
At runtime, each function call of do_T_� is responsible for
the intended behavior of the main program in the scheduler
processor. At each call to these functions, the runtime will
do the following actions:

1) Analyze data dependency including Read after
Write (RAW), Write after Read (WAR) and Write

after Write (WAW) [41]. The data dependency analy-
sis is based on the parameters used by tasks.

2) Eliminate the WAW and WAR dependencies by
parameter renaming techniques.

3) Identify the target function unit to run current task
by a task mapping method.

4.1 Data Structures for Task Level Scoreboarding

If current task has no data dependency with previous issued
tasks, then it can be spawned immediately. However,
dependencies need to be checked and eliminated before
they can be spawned.

By reviewing the data dependencies problems at instruc-
tion level, register renaming techniques are effective meth-
ods for OoO execution. Traditional approaches, like
Scoreboarding and Tomasulo, are quite successful in the
processor architecture designs. One major contribution of
Task-Scoreboarding is an algorithm for OoO task execution.

In the description of programming model, each task is
composed of task name, source and destination operands.
As the tasks are treated as macro instructions, then the data
dependencies problem can also happen for task level. By
reviewing the data dependencies problems (RAW, WAW
and WAR) at instruction level, Scoreboarding and Toma-
sulo are both effective methods for OoO instruction execu-
tion. The reasons for which we choose Scoreboarding
instead of Tomasulo are the following:

1) Scoreboarding can provide a light-weight task haz-
ards engine for OoO execution. The architecture is
simpler, which brings smaller scheduling overheads.

2) For task level parallelization, WAW and WAR hap-
pens not as much as at instruction level. Most pro-
grammers are intended to use different parameters
in case of WAR and WAW hazards. Therefore intro-
ducing a mechanism as complexes as Tomasulo is
not just fair enough.

Similar to instruction level, we use parameter renaming
techniques to uncover task level parallelism. Tomasulo is
applied to task level instead of Scoreboarding which could
do no more than stall when dependency occurs. There are
five components of the scheduler:

1) Functional unit status—indicates the state of the func-
tional unit (FU).

Table 2 lists the function unit status. Whenever
there is a task whose input operands are ready, the
task will be dispatched to function units for execu-
tion. There are eight fields for each item:

Busy—Indicates whether the unit is busy or not.
Fi—Destination variables.
Fj, Fk—Source-variables.
Qj, Qk—Functional units producing sources Fj, Fk.
Rj, Rk—Flags indicating when Fj, Fk are ready and

not yet read. Set to No after operands are read.
2) Variable result status—indicates which functional unit

will store values for each variable, if an active task
has the variable as its destination. This field is set as
blank whenever there are no pending tasks that will
write that variable, as shown in Table 3, each vari-
able is assigned with a unique ID.

1302 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 5, MAY 2015

3) Variable Table—stores the value for each variable.
After each task is finished, the results are sent back
to variable table through interconnect directly.

4) Task Partition Module—in charge of task partition and
mapping. Since each task can either run on processor
or IP core, thus a good partition method will largely
increase the system throughput. For demonstration,
we employ a greedy strategy: If there are idle IP
cores, the task will be sent to a specific IP; or else,
task will be sent to a computing processor. If all the
available function units are busy, task must wait
until a specific unit is released.

5) Function Unit Monitor—monitors and collects the
running information of all the function units. The
running information helps task partition module
map task to certain unit, and also, can achieve load-
balance of the hardware.

4.2 Processing Flow for OoO Scheduling

Now let’s see how the task sequence is issued and executed.
The algorithm is divided into five stages: issue stage, read
op stage, partition stage, execution stage, and write result
stage. Each task undergoes five steps in executing, as is
shown in Table 4.

The whole five stages are similar to instruction level but
adding a task partition stage as stage 3. From Table 4, we
can examine the steps informally and then see in detail how
the scoreboard keeps the necessary information determin-
ing when to progress from one step to the next. The five
steps are as follows:

1) Issue—if a functional unit for the task is free and no
other active task has the same destination variable,

the scoreboard issues the task to the functional unit
and updates its internal data structure. By ensuring
that no other active functional unit wants to write
its result into the destination variable, we guaran-
tee that WAW hazards cannot be present. If a struc-
tural or WAW hazard exists, the task issue will
stall, and no further tasks can issue until these haz-
ards are cleared.

2) Read operands—the scoreboard monitors the avail-
ability of the source operands. If one or more of the
operands is not yet available, the scoreboard monitor
will wait for the results. A source operand is avail-
able if no earlier issued active task is going to write
it. When both operands are available, task will be
dispatched to certain function units with task parti-
tion. The scoreboard resolves RAW hazards dynami-
cally in this step, and tasks may be sent into
execution out of order.

3) Task Partition—when in the issue stage, the decided
function unit is to make sure that there are no struc-
tural hazards. However, after read op stage is fin-
ished, maybe there are other available function
units, which may provides shorter task execution
time. Therefore, in this stage a partition strategy is
called for task reallocation. If there are other function
units available, the task execution time on each func-
tion unit will be compared. After the comparison fin-
ished, scoreboard will choose the function unit on
which current task can finish as early as possible.

4) Execution—the functional unit begins execution once
receiving operands. When the result is ready, it noti-
fies the scoreboard that it has completed execution.
Task distribution and data transfer are both per-
formed through on-chip interconnect.

TABLE 4
Processing Flow of Task-Scoreboarding

TABLE 2
Function Unit Status in Task-Scoreboarding

TABLE 3
Variable Table in Task-Scoreboarding

WANG ET AL.: ARCHITECTURE SUPPORT FOR TASK OUT-OF-ORDER EXECUTION IN MPSOCS 1303

5) Based on the hardware interconnect, the execution
results are returned through interrupts. One inter-
rupt controller is integrated to detect interrupt
request signals from all the interconnect channels.
The interrupt handler assigns the variables with
results. In our proposed architecture, since results
from different tasks may be transferred back at the
same time, a first-come-first-serve policy is used to
deal with interrupts, and no interrupt preempt is
supported.

6) Write result—this is the final stage of completing
tasks. Once the scoreboard is aware that the func-
tional unit has completed execution, it checks for
WAR hazards. The cases of normal result-writing
occur when there are no WAR hazards between cur-
rent task and its predecessor tasks.

4.3 Adaptive Task Mapping

The scheduling module decides when the task can be exe-
cuted due to data dependencies, furthermore, when a task
is ready, only one target function units is selected from mul-
tiple options. The task mapping scheme should decide the
target for each service, as is described in Algorithm 1.

Each function unit has its own private memory not shar-
ing with other units. The tasks with necessary I/O data are
spawned by the messages through hardware interconnects,
for example, FSL in the demonstration of this paper. Since
the tasks throughout this paper are pure functional, the
parameters frommultiple tasks are synchronized in the syn-
chronization methods.

Our proposed middleware provides implicit synchroni-
zation methods. An implicit synchronization barrier is setup
at the end of automatic parallel regions, before the output
codes. For example, if the output functions in the main pro-
gram want to print out the results (e.g., Printf) at the end of
an automatic parallel region, it will automatically wait until
all the annotated functions are finished. At the time of writ-
ing this paper, OoO middleware is allowed to deal with

synchronizations among all the functions defined in the
function library.

Moreover, when the results are returned through the FSL
bus, scheduler processor is running the subsequent tasks,
therefore an interrupt signal is raised to stall the main pro-
gram. For hardware support to the interrupt mechanisms,
an interrupt controller is integrated into the hardware plat-
form, which traces the interrupt events for all the FSL links.

5 PROTOTYPE AND RESULTS

To evaluate the OoO middleware in real hardware, we built
a hardware prototype on a state-of-the-art Xilinx Virtex-5
and Zynq FPGA. Due to page limitations here we present
the Virtex-5 platform in detail. We use microblaze version
7.20.a (with the clock frequency 125 MHz, local memory of
8 KB, no configurable task or data cache) as scheduling pro-
cessor. The experimental platform is extended from our pre-
vious work in [42]. The prototype system is composed of
following components:

1) One scheduling Microblaze processor is integrated
as the scheduler to run main program.

2) One Microblaze is employed as computing proces-
sor. Software task functions are implemented and
packaged in standard C libraries.

3) Hardware IP cores are implemented in HDL (Veri-
log) and packaged into Xilinx FSL manners. Parts of
the EEMBC DENBench benchmarks are used to mea-
sure the performance and cost. For each test case, we
have transplanted the software benchmark program
to FPGA and also implemented a related IP core
with RTL implementations. At the time of writing
this paper, we have designed five types of hardware
IP cores: Adder, IDCT, AES (ENC and DEC), DES
(ENC and DEC), and JPEG. For each integrated IP
core, software task runtime library is also imple-
mented on microblaze at the same time.

4) Peripherals including UART, Timer and interrupt
controller are integrated for debugging through pro-
cessor Local bus.

5.1 OoO Execution Results

Based on the prototype system, we designed several sample
applications to measure the performance, scheduling over-
heads and hardware cost of the MPSoC system [43]. In this
case, we measured the speedup under four situations:
RAW, WAW, no hazards, and WAR. In order to evaluate
the peak speedup, we define two parameters:

First, the task execution time denotes the entire execution
time using in different types of data hazards. In the circum-
stances of No dependencies, WAW and RAW, the task exe-
cution time is configured to the same value (varied from 5k
to 100k cycles), while in WAR and WAW, the execution
time is configured to different values for heterogeneous
computational tasks.

Second, the task scale refers to the total amount of differ-
ent tasks. In particular, as we use multiple loop iterations to
construct the intra-loop and inter-loop data hazards
between tasks, the task scale indicates the number of loop
iterations. In demonstration, we set the task scale less than
4,096 in all the test cases.

1304 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 5, MAY 2015

5.1.1 RAW Data Hazards

In order to evaluate the speedup in RAW case, execution
time of different tasks is configured to the same value (from
5k to 16k cycles). Table 5 lists the task sequences designed
to measure the performance for RAW data hazards. The
four test cases have different percents of RAW hazards.

Increased from 25 to 100 percent, the theoretical speedup
of the task sequences are 4.0�, 2.0�, 1.33� and 1.0�
respectively.

For RAW (25 percent) case, the theoretical speedup is
the same as No-Hazards. This is because tasks are exe-
cuted in continuous loops. After loop is unrolled, the
first task do_T_adder (a, e) in later loop will run in the
meantime of the task do_T_aes_dec(d, h, f) in prior loop,

which means the execution time of the adder task will
be hidden in the final time. Therefore, the theoretical
speedups are the same as the test case with only struc-
tural hazards.

The experimental results for RAW hazards are shown
in Fig. 6[A] � [D]. The Task Execution Time in the leg-
end illustrates the average execution time for the tasks
belong to different series. The experimental results show
that the maximum speedup for each task sequence is
3.75�, 1.95�, 1.31�, and 0.99� respectively. This means
that the Scoreboarding on RAW hazards can achieve
93.81, 97.31, 98.45 and 99.05 percent of the theoretical
speedups.

5.1.2 WAW Data Hazards

Table 6 lists the task sequences designed to measure the
performances for WAW hazards. Increased from 25 to
100percent, the theoretical speedup of the three task
sequences are calculated in (1) to (3), respectively:

Fig. 6. Experimental results for RAW-WAW-No Hazards, [A] to [D] refer to different rate of RAW hazards, [E]-[G] reflects the WAW hazards, and [H]
presents the No hazards application.

TABLE 6
Task Sequence to Test WAW Data Hazards

TABLE 5
Task Sequence to Test RAW Data Hazards

WANG ET AL.: ARCHITECTURE SUPPORT FOR TASK OUT-OF-ORDER EXECUTION IN MPSOCS 1305

S1 ¼ ðTAdder þ TIDCT þ Tenc þ TdecÞ=ðTAdder þ TIDCT Þ ¼ 2:0;

(1)

S2 ¼ ðTAdder þ TIDCT þ Tenc þ TdecÞ=ðTAdder þ TIDCT þ TencÞ ¼ 1:33;

(2)

S3 ¼ ðTAdder þ TIDCT þ Tenc þ TdecÞ=ðTAdder þ TIDCT þ Tenc þ TdecÞ ¼ 1:0:

(3)

The experimental results for WAW data hazards are
shown in Fig. 6[E]�[G]. The maximum experimental
speedups for each task sequence are 1.97�, 1.31�, and
0.98�, respectively. It means the Scoreboarding on WAW
hazards can reach 98.70, 98.25 and 98.46 percent of the
theoretical peak speedups.

5.1.3 No Data Hazards

The no-hazard situation is more straightforward than other
types of data hazards. Therefore we choose one test case, as
is shown in Table 7.

Fig. 6[H] shows the experimental speedup for No-hazard
case. Since the four IP cores have same execution time, the
theoretical maximum speedup is 4.0�. However, because of
the software scheduling and communication overheads
between different processors, the experimental results can-
not reach the maximum speedup, especially when with
smaller and less tasks. From the figure, we can see that
when the task scale and running time are large enough, the
experimental maximum speedup can reach Speedup ¼
3.922�, which is 98.04 percent of ideal value.

5.2 Example Results and Discussion

Based on the prototype, we designed several example test
cases using the specific functions of the implemented IP
cores. Generally, since the platform integrates both comput-
ing processor and hardware IP cores, each application can
either run on microblaze processor with software or in spe-
cific IP in hardware. In this section, we measure speedups
of two typical task sequences through partitioning the test
tasks.

A task sequence with 11 tasks is listed in Table 8. Type
indicates whether this task runs on GPP (S) or IP core (H).
The last two columns refer to the ideal start and finish time
for current task, taking no account of the scheduling and
transfer costs.

Fig. 7 depicts the comparison between theoretical and
experimental results of the task sequence. The curve of
experimental value is consistent with theoretical value, but
slightly larger. The gap between them stands for the sched-
uling and communication overheads. The average of over-
heads is less than 4.9 percent of task running time itself,
which proves that the scheduling overhead of the schedul-
ing scheme is quite low.

Fig. 7 also depicts the OoO task execution architecture
support. Tasks No. 2�6 complete OoO, which leads to the
running time of the task sequences (No.1�2) and (No.1�6)
are the same. Similarly, task No.7 and 8, No.10 and 11 also
finish OoO.

5.3 Results of Adaptive Task Mapping

In order to verify the adaptive hardware/software task
mapping scheme, we design a task sequence in Table 9.
In this case, we introduce task mapping mechanism to
operate hardware/software collaboration. For these 11
tasks, task No.4 and No.9 are dispatched to computing
processor for execution. This is because that when the
two tasks are issued, target IP cores are busy. Thus, score-
board chooses software computing processors as target
function units.

Fig. 8 gives the comparison between theoretical and
experimental results of the task sequences in Table 9. Simi-
larly, the scheduling and communication overheads are less
than 3.3 percent of task running time. Moreover, in this
case, tasks have been partitioned between hardware and
software. A computing processor has been integrated to

TABLE 7
Task Sequence to Test No Data Hazards

TABLE 8
An Example Task Sequence

Fig. 7. Experimental results of the Example Task Sequence, the x-axis
refers to the length of sequences listed in Table 10, while the y-axis is
the running time of the application.

1306 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 5, MAY 2015

accelerate tasks execution when all the hardware IP cores
are busy. Task No.4 and No.9 are distributed to computing
processor for execution, which also demonstrated that our
HW/SW platform can be used to verify alternative schedul-
ing and mapping methods.

Meanwhile, as in this test case, task No.9 is distributed to
computing processor for execution, which demonstrates
that the current partition method is not an optimal choice
for the entire task sequence. Alternately, if task No.9 waits
until task No.8 finish on AES_DEC core, instead of run
immediately on computing processor, the entire task run-
ning time can be further reduced.

5.4 Performance versus Task SuperScalar

One of the most related works of our Task-Scoreboarding
scheme is the Task Superscalar, therefore, we also applied
renaming schemes employed in Task Superscalar to FPGA
for comparison, which is illustrated in Fig. 9. We use the
generated 11 applications in Table 8, and then evaluated
both TaskSs and Task-Scoreboarding algorithm respec-
tively. Due to the scheduling overheads, the performance of
both approaches gets larger than the ideal scenario, which is
normalized as 1.0�. It can be derived that the TaskSs always
achieves higher scheduling overheads than our Task-Score-
boarding approach, from 3 (T7) to 14 percent (T5). What’s
more, our approach can get an average overhead less than 5

percent. Therefore our approach obtains much smaller over-
heads than TaskSs.

5.5 JPEG Case Study

In order to evaluate the Task-Level Scoreboarding mecha-
nism in real applications, we have implemented the Task
Scoreboarding algorithm with the JPEG encoding applica-
tions, as is illustrated in Fig. 10. We use Lena picture at
different pixel sizes for JPEG encoding procedure. The
picture is decomposed to plenty of 8 � 8 blocks, which
are compressed by the main body of the algorithm as a
normalized unit. An 8 � 8 R-G-B block is read from the
origin bmp file first and begins to be converted to the Y-
Cr-Cb colour space (CC). Then, each vector in the <Y, Cr,
Cb> tuple is handed over for a two dimensional discrete
cosine transform (DCT-2D). Next, all the data in the unit
are normalized (Quant) for further encoding. At last, Zig-
Zag and Huffman (ZZ/Huffman) encoding algorithm is
used to compress the block data into the final bit stream
in the end of the iteration.

We first profiled the JPEG applications to identify the
parts for different phases, as illustrated in the Ratio term in
the legend of Fig. 11. Due to that the ZZ/Huffman phase
takes only 2.6 percent of the total execution time, thereby
we have not implemented this part as hardware yet. Mean-
while, the DCT-2D phase is regarded as the major bottle-
neck of all the four phases, as it takes 73.8 percent of the
entire execution time. In contrast, the other two CC and
Quant steps take 20.8 and 2.8 percent of the total execution
time respectively.

Fig. 8. Experimental results of Adaptive Task Mapping.

Fig. 9. Performance comparison between TaskSs and Task-Score-
boarding, we use the same benchmarks in Table 8.

TABLE 9
Task Sequence to Test Adaptive Mapping Scheme

Fig. 10. Reconfigurability study. Using JPEG applications to leverage
hardware execution with software execution.

WANG ET AL.: ARCHITECTURE SUPPORT FOR TASK OUT-OF-ORDER EXECUTION IN MPSOCS 1307

Corresponding to the percentage of execution time for
different phases, the speedup of the hardware imple-
mentation for different functionality modules are illus-
trated as the Speedup term in the legend of Fig. 11. The
DCT-2D hardware module has been optimized to
achieve as high 143.8�, while the CC and Quant mod-
ules are 66.9� and 15.7� respectively.

Along with the achieved speedup, the area and power
consumption are considered as the two most significant
metrics for evaluation. The DCT-2D occupies most area and
power of the four parts, which are 2.38 mm2 and 31.1 mW,
using Xilinx ISE synthesis tools and XPower Analyzer. In
Comparison, the hardware CC module takes 1.74 mm2 and
8.7 mW, while Quant module takes 0.1 mm2 and 8.7 mW
respectively. Fig. 12 illustrates the differences between the
experimental and the estimated metrics. The x-axis in
Fig. 11 indicates the specific hardware configuration, while
the y-axis represents the differential percentage of speedup,
power, and resource cost and core efficiency. We can learn
from Fig. 12 that the actual architectures come up to a
speedup of 26.01� for hybrid systems and a speedup of
3.83� for homogeneous systems.

For homogeneous architectures, the difference in
resource cost is less than 5.6 percent and that in power
consumption is less than 6.8 percent. Besides, both
speedup and core efficiency difference are less than 2.9
percent. For hybrid architectures, all items have insignifi-
cant difference except for the performance metrics with
the hardware configuration at 1 MB þ 1 CC þ 1 DCT and
1 MB þ 1 CC þ 1 DCT þ 1 Quant. Both of them have a
difference up to 14.2 percent. Considering that Quant and
ZZ/Huffman steps in the JPEG 8 � 8 block compression
only take a small ratio (2.6 percent depicted in Fig. 10),
therefore any bus delay or communication overheads will
have a scaled influence on the system speedup.

5.6 Hardware Costs

The whole system is implemented in Xilinx Virtex5 LX50T
FPGA, including one Microblaze processor, one computing
processor, following different IP blocks: Adder, IDCT, AES
(ENC and DEC), DES (ENC and DEC), JPEG, memory and
peripheral modules.

Table 10 summarizes the hardware cost within single
FPGA. The whole system takes 5,238 slice Registers and
19,209 Slice LUTs. Considering the resources supplied in
FPGA, the hardware cost is acceptable for the proposed
architecture. By looking further into the synthesis report,
most of the resources are occupied by microblaze processors
and hardware IP cores, we can get that the scheduling
Microblaze processor takes 1,650 LUTs and 1,489 FFs, while
the hardware costs of the IP cores distinguish from each
other. For example, JPEG function including four phases:
Color Conversion (CC), 2D-DCT, Zig-Zig reordering/Quan-
tization (ZZ/Q) and Huffman encoding, in which the 2D-
DCT was identified as the critical section.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed an architecture support
for OoO task execution with middleware on FPGA based
MPSoCs. The middleware can automatically identify the
parallel region and eliminate the data dependencies with
renaming techniques. An adaptive mapping scheme
allows the scheduler spawn tasks to a suitable function
unit even when the hardware reconfigured. In order to
allow OoO task execution, we have proposed Task-Score-
boarding, a data hazards detecting engine for OoO task
execution. Regarding processors and IP cores as function
units, Task-Scoreboarding treats tasks as abstract instruc-
tions. It can analyze inter-task data dependencies at run-
time and issue tasks to heterogeneous function units
automatically. Experimental results on the state-of-art
FPGA platform demonstrate that our middleware is flex-
ible to support different IP cores with acceptable hard-
ware costs. The Task-Scoreboarding can achieve more
than 95 percent of the ideal peak speedup. In particular,
the Task-Scoreboarding algorithm costs more than 10
percent overheads than state-of-the-art approaches.

The experimental results are inspiring but there is a lot of
work left in the future. First, we plan to extend the renaming
technologies to dynamic partial reconfigurable situations
where processors and IP cores can be adaptive to fit in dif-
ferent applications at runtime. Second, we are implement-
ing the module in RTL which is more capable to handle
smaller tasks. In the meantime, new annotations in the

TABLE 10
Hardware Cost of the Entire Hardware System

Fig. 12. Difference between experimental and estimated metrics on
speedup, area, efficiency, and power.

Fig. 11. Profiling results of the four stages in JPEG application.

1308 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 5, MAY 2015

programming paradigms are taken into consideration by
the source to source compiler to identify both the library
tasks and the general purpose software tasks. Finally, the
improvement of the synchronization mechanism using real-
time operating system supports is another promising direc-
tion for heterogeneous MPSoC research paradigms.

ACKNOWLEDGMENTS

This work was supported by the National Science Founda-
tion of China under grants (No. 61379040, No. 61272131,
No. 61202053, No. 61222204, No. 61221062), Jiangsu Provin-
cial Natural Science Foundation (No. SBK201240198),
and the Strategic Priority Research Program of CAS
(No. XDA06010403). The authors deeply appreciate many
reviewers for their insightful comments and suggestions.
Professor Xi Li is the corresponding author.

REFERENCES

[1] S. Singh, “Computing without processors,” Commun. ACM,
vol. 54, no. 8, pp. 46–54, 2011.

[2] S. Borkar and A. A. Chien, “The future of microprocessors,” Com-
mun. ACM, vol. 54, no. 5, pp. 67–77, 2011.

[3] O. A. R. Board, OpenMP C and C++ application program inter-
face, version 1.0. 1998 [Online]. Available: http://www.openmp.
org.

[4] K. Group. (2010). OpenCL. [Online]. Available: http://www.
khronos.org/opencl.

[5] D. B. Robert, F. J. Christopher, C. K. Bradley, E. L. Charles, H.
R. Keith, and Z. Yuli, “Cilk: An efficient multithreaded run-
time system,” in Proc. 5th ACM SIGPLAN Symp. Principles
Practice Parallel Program., 1995, pp. 207–216.

[6] J. Planas, R. M. Badia, E. Ayguad, and J. Labarta, “Hierarchical
task-based programming with StarSs,” Int. J. High Perform. Com-
put. Appl., vol. 23, no. 3, pp. 284–299, 2009.

[7] P. Bellens, J. M. Perez, F. Cabarcas, A. Ramirez, R. M. Badia, and J.
Labarta, “CellSs: Scheduling techniques to better exploit memory
hierarchy,” Sci. Program. - High Perf. Comput. Cell Broadband
Engine, vol. 17, nos. 1/2, pp. 77–95, 2009.

[8] G. Gupta and G. S. Sohi, “Dataflow execution of sequential imper-
ative programs on multicore architectures,” in Proc. 44th Annu.
IEEE/ACM Int. Symp. Microarchit., 2011, pp. 59–70.

[9] A. Hayashi, Y. Wada, T. Watanabe, T. Sekiguchi, M. Mase, J. Shir-
ako, K. Kimura, and H. Kasahara, “Parallelizing compiler frame-
work and API for power reduction and software productivity of
real-time heterogeneous multicores,” in Proc. 23rd Int. Conf. Lan-
guages Compilers Parallel Comput., 2010, pp. 184–198.

[10] D. Kuck, E. Davidson, D. Lawrie, A. Sameh, C. Q. Zhu, A. Veiden-
baum, J. Konicek, P. Yew, K. Gallivan, W. Jalby, H. Wijshoff, R.
Bramley, U. M. Yang, P. Emrath, D. Padua, R. Eigenmann, J. Hoef-
linger, G. Jayson, Z. Li, T. Murphy, and J. Andrews, “The Cedar
system and an initial performance study,” in Proc. 25 Years Int.
Symp. Comput. Archit. (Sel. Papers), 1998, pp. 213–223.

[11] K. Faraydon, M. Alain, N. Anh, A. Utku, and A. Tarek, “A multi-
level computing architecture for embedded multimedia
applications,” IEEE Micro, vol. 24, no. 3, pp. 56–66, May/Jun. 2004.

[12] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar, “Multiscalar pro-
cessors,” in Proc. Int. Symp. Comput. Archit, 1995, pp. 414–425.

[13] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith, “Trace pro-
cessors,” in Proc. Int. Symp. Microarchit., 1997, pp. 138–148.

[14] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer,
and D. Shippy, “Introduction to the Cell multiprocessor,” IBM J.
Res. Develop., vol. 49, pp. 589–604, 2005.

[15] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Green-
wald, H. Hoffman, P. Johnson, L. Jae-Wook, W. Lee, A. Ma, A.
Saraf, M. Seneski, N. Shnidman, V. Strumpen, M. Frank, S. Amar-
asinghe, and A. Agarwal, “The raw microprocessor: A computa-
tional fabric for software circuits and general-purpose programs,”
IEEE Micro, vol. 22, no. 2, pp. 25–35, Mar./Apr. 2002.

[16] L. Hammond, B. A. Hubbert, M. Siu, M. K. Prabhu, M. Chen, and
K. Olukotun, “The stanford Hydra CMP,” IEEE Micro, vol. 20,
no. 2, pp. 71–84, Mar./Apr. 2000.

[17] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin,
“WaveScalar,” in Proc. Int. Symp. Microarchit. 2003, p. 291.

[18] K. Sankaralingam, R. Nagarajan, R. McDonald, R. Desikan, S. Dro-
lia, M. S. Govindan, P. Gratz, D. Gulati, H. Hanson, C. Kim, H.
Liu, N. Ranganathan, S. Sethumadhavan, S. Sharif, P. Shivakumar,
S. W. Keckler, and D. Burger, “Distributed microarchitectural pro-
tocols in the TRIPS prototype processor,” in Proc. Int. Symp. Micro-
archit., 2006, pp. 480–491.

[19] D. Y. Deng, D. Lo, G. Malysa, S. Schneider, and G. E. Suh, “Task
superscalar: An out-of-order task pipeline,” in Proc. 43rd Annu.
IEEE/ACM Int. Symp. Microarchit., 2010, pp. 89–100.

[20] B. Mladen and N. Tim, “A distributed, simultaneously multi-
threaded (SMT) processor with clustered scheduling windows for
scalable DSP performance,” J. Signal Process. Syst. - Special Issue:
Embedded Comput. Syst. DSP, vol. 50, pp. 201–229, 2008.

[21] B. Mladen and N. Tim, “Flexible and efficient instruction-grained
run-time monitoring using on-chip reconfigurable fabric,” in Proc.
43rd Annu. IEEE/ACM Int. Symp. Microarchit. 2010, pp. 137–148.

[22] J. C. Jenista, Y. h. Eom, and B. C. Demsky, “OoOJava: Software
out-of-order execution,” in Proc. 16th ACM Symp. Principles Prac-
tice Parallel Program., 2011, pp. 57–68.

[23] A. Ghuloum, T. Smith, G. Wu, X. Zhou, J. Fang, P. Guo, B. So, M.
Rajagopalan, Y. Chen, and C. B., “Future-proof data parallel algo-
rithms and software on intel multi-core architecture,” Intel Tech-
nol. J., vol. 11, no. 4, pp. 333–348, 2007.

[24] K. Knobe, “Ease of use with concurrent collections (CnC),” in Proc.
First USENIX Conf. Hot Topics Parallelism, 2009, p. 17.

[25] S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao, “The Chimaera
reconfigurable functional unit,” IEEE Trans. Very Large Scale Integr.
Syst., vol. 12, no. 2, pp. 206–217, 2004.

[26] J. R. Hauser and J. Wawrzynek, “Garp: A MIPS processor with a
reconfigurable coprocessor,” in Proc. 5th Annu. IEEE Symp. FPGAs
Custom Comput. Mach. 1997, pp. 12–27.

[27] R. D. Wittig and P. Chow, “OneChip: An FPGA processor with
reconfigurable logic,” in Proc. IEEE Symp. FPGAs for Custom Com-
put. Mach., 1995, pp. 126–135.

[28] R. Razdan and M. D. Smith, “A high-performance microarchitec-
ture with hardware-programmable functional units,” in Proc. 27th
Annu. Int. Symp. Microarchit., 1994, pp. 172–180.

[29] H.-S. Kim, A. K. Somani, and A. Tyagi, “A reconfigurable
multi-function computing cache architecture,” in Proc. 8th
ACM/SIGDA Int. Symp. Field Programmable Gate Arrays, 2000,
pp. 85–94.

[30] M. A. Watkins and D. H. Albonesi, “ReMAP: A Reconfigurable
Heterogeneous Multicore Architecture,” in Proc. 43rd Annu. IEEE/
ACM Int. Symp. Microarchit., 2010, pp. 497–508.

[31] J. Wawrzynek, D. Patterson, M. Oskin, S.-L. Lu,, C. Kozyrakis, J. C.
Hoe, D. Chiou, and K. Asanovic, “RAMP: Research accelerator
for multiple processors,” IEEE Micro, vol. 27, no. 2, pp. 46–57,
Mar./Apr. 2007.

[32] T. Givargis and F. Vahid, “Platune: A tuning framework for sys-
tem-on-a-chip platforms,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 21, no. 11, pp. 1317–1327, Nov. 2002.

[33] G. Kuzmanov, G. Gaydadjiev, and S. Vassiliadis, “The MOLEN
processor prototype,” in Proc. 12th Annu. IEEE Symp. Field-Pro-
grammable Custom Comput. Mach., 2004, pp. 296–299.

[34] N. E. J. Sheng Ma and Z. Wang, “DBAR: An efficient routing algo-
rithm to support multiple concurrent applications in networks-
on-chip,” in Proc. 38th Annu. Int. Symp. Comput. Archit., 2011,
pp. 413–424.

[35] M. Mehrara, P.-C. Hsu, M. Samadi, and S. Mahlke, “Dynamic par-
allelization of JavaScript applications using an ultra-lightweight
speculation mechanism,” in Proc. IEEE 17th Int. Symp. High Per-
form. Comput. Archit., 2011, pp. 87–98.

[36] A. Kotha, K. Anand, M. Smithson, G. Yellareddy, and R. Barua,
“Automatic parallelization in a binary rewriter,” in Proc. 43rd
Annu. IEEE/ACM Int. Symp. Microarchit., 2010, pp. 547–557.

[37] J. Suh and M. Dubois, “Dynamic MIPS rate stabilization in out-of-
order processors[J],” SIGARCH Comput. Archit. News, vol. 37,
no. 3, pp. 46–56, 2009.

[38] R. M. Tomasulo, “An efficient algorithm for exploiting multiple
arithmetic units,” IBM J. Res. Develop., vol. 11, no. 1, pp. 25–33,
1967.

[39] F. Karim, A. Mellan, B. Stramm, A. Nguyen, T. Abdelrahman, and
U. Aydonat, “The hyperprocessor: A template system-on-chip
architecture for embedded multimedia applications,” in Proc.
Workshop Appl. Specific Processors, 2003, pp. 66–73.

WANG ET AL.: ARCHITECTURE SUPPORT FOR TASK OUT-OF-ORDER EXECUTION IN MPSOCS 1309

[40] Xilinx. Inc. (2009). Fast simplex link (FSL) specification. [Online]
Available: http://www.xilinx.com/products/ipcenter/FSL.htm.

[41] J. Hennessy and D. Patterson, Computer Architecture: A Quantita-
tive Approach, 4th ed. San Mateo, CA, USA: Morgan Kaufman,
2007.

[42] C. Wang, J. Zhang, X. Zhou, X. Feng, and X. Nie, “SOMP: Service-
oriented multi processors,” in Proc. IEEE Int. Conf. Services Com-
put., 2011, pp. 709–716.

[43] C. Wang, P. Chen, X. Li, X. Feng, J. Zhang, and X. Zhou.
“Detecting Data Hazards in Multi-Processor System-on-Chips on
FPGA,” IPDPS Workshops, pp. 282–287, 2012.

Chao Wang received the BS and PhD degrees
from the University of Science and Technology of
China, in 2006 and 2011, respectively, both in
computer science. He is a postdoc researcher in
Embedded System Lab of the University of Sci-
ence and Technology of China. His research
interests focus on multicore and reconfigurable
computing. He has authored more than 30 publi-
cations and patents, including ACM TACO and
FPGA conferences. He serves as a TPCmember
and a reviewer for more than 20 conferences/
journals. He is a member of the IEEE, ACM,
and CCF.

Junneng Zhang received the BS degree of com-
puter science from the University of Science and
Technology of China in 2009. He is currently
working toward the PhD degree in the Embedded
System Lab in Suzhou Institute of University of
Science and Technology of China, Suzhou,
China. His research interests focus on multipro-
cessor system on chip, reconfigurable computing
and big data oriented heterogeneous platforms.
He is a student member of the IEEE and China
Computer Federation (CCF).

Peng Chen received the BS degree in computer
science from the University of Science and Tech-
nology of China, in 2010. He is currently working
toward the PhD degree in the Embedded System
Lab in Suzhou Institute of University of Science
and Technology of China, Suzhou, China. His
research interests focus on multiprocessor sys-
tem on chip, reconfigurable computing, and big
data oriented heterogeneous platforms. He is
a student member of the IEEE and China Com-
puter Federation (CCF).

Yunji Chen graduated from the Special Class for
the Gifted Young, University of Science and
Technology of China, Hefei, China, in 2002. He
received the PhD degree in computer science
from the Institute of Computing Technology
(ICT), Chinese Academy of Sciences (CAS), Bei-
jing, China, in 2007. He is currently a professor at
ICT. His research interests include computer
architecture and machine learning. He has auth-
ored or coauthored one book and more than 50
papers in these areas.

Xuehai Zhou is the executive dean of the School
of Software Engineering, University of Science
and Technology of China, and a professor in
the School of Computer Science. He serves as
a general secretary of steering committee of
computer College fundamental Lessons, and
technical committee of Open Systems, China
Computer Federation. He has led many national
863 projects and NSFC projects. He has pub-
lished more than 100 international journal and
conference articles in the areas of software engi-

neering, operating systems, and distributed computing systems. He is a
member of the ACM and IEEE, a senior member of the CCF.

Ray C.C. Cheung (M’07) received the BEng and
MPhil degrees in computer engineering and com-
puter science and engineering from the Chinese
University of Hong Kong (CUHK), Hong Kong, in
1999 and 2001, respectively, and the PhD
degree and DIC in computing from Imperial Col-
lege London, London, United Kingdom, in 2007.
After completing the PhD degree, he received
the Hong Kong Croucher Foundation Fellowship
for his postdoctoral study in the Electrical Engi-
neering Department, University of California, Los

Angeles (UCLA). In 2009, he was a visiting research fellow in the
Department of Electrical Engineering, Princeton University, Princeton,
NJ. He is currently an assistant professor in the Department of Electronic
Engineering, City University of Hong Kong (CityU). He is the author of
more than 30 journal papers and more than 40 conference papers. His
research team, CityU Architecture Lab for Arithmetic and Security
(CALAS), focuses on the following research topics: reconfigurable
trusted computing, applied cryptography, and high-performance biomed-
ical VLSI designs.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1310 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 5, MAY 2015

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

