We discuss a generalization of Fisher's Inequality.

Def: Let \(m \in \mathbb{N} \), we say \(F \subseteq 2^{[m]} \) is \(L \)-intersecting if \(|A \cap B| \leq L \) for all \(A, B \in F \).

Rmk: Fisher's Ineq. just says that \(L = 1 \).

Thrill Frankl - Wilson, 1981

If \(F \) is an \(L \)-intersecting family in \(2^{[n]} \), then \(|F| \leq \frac{n}{\binom{n-1}{L}} \).

Rmk: This is best possible, considering all subsets of \([n]\) of size at most \(L\) for \(n = 3\), \(1 \leq L \leq 3 \implies |F| = \frac{1}{\binom{n-1}{L}} \).

Proof: Let \(F = \{ A_1, A_2, \ldots, A_m \} \) where \(|A_1| = \lambda_1 \leq \cdots \leq |A_m| \).

Lemma: If \(f_1, \ldots, f_m \) are linearly independent.

For each \(A_i \in F \), define a polynomial \(f_i(x) \) on \(\mathbb{R}^n \) by
\[
f_i(x) = \prod_{j \in A_i} (x_j - a_j).
\]

so \(f_i(x) \) is a polynomial with \(n \) variables and with degree \(\leq |A_i| \).

Note: \(f_i(A) = \prod_{j \in A_i} (|A_i| - 1) \), \(\forall A \subseteq [n] \).

For \(1 \leq j \leq m \), \(f_j(X_j) = \prod_{i \neq j} (|A_i \cap A_j| - 1) = 0 \), since \(F \) is \(L \)-intersecting.

\[\exists (L, \delta) \text{ s.t. } |A_i \cap A_j| \leq \delta \times |A_i| \text{ where } |A_j| \leq |A_i| \implies |A_i \cap A_j| < |A_i| \).

By Lemma, we see \(f_1(x), \ldots, f_m(x) \) are linearly independent.

Next, we consider the dimension of the space containing such polynomials.

For \(x \in \mathbb{R}^n \), \(f_i(x) = x_1^{\lambda_1} x_2^{\lambda_2} x_3^{\lambda_3} \ldots \), can view \(x_j \) as \(x_j \).

Observation: All vectors we consider are \(0/1 \) vectors. Thus, we can define \(f_i(X) \) from \(f_i(x) \) by replacing \(x_j^k \) with \(X_j \).

\[\Rightarrow f_i(\mathbf{1}_j) = f_i(\mathbf{1}_j) = \delta, \quad j \leq \epsilon.\]

resulting in \(f_1(\mathbf{1}), \ldots, f_m(\mathbf{1}) \) are linearly independent.
We see that each \(f_i(x) \) is a linear combination of the monomials \(\prod x_i \) where \(I \in \mathcal{I}_n \) and \(|I| \leq |I'| \). And the number of such monomials is \(\frac{\binom{m}{k}}{k!} \), which is the dimension of the space containing \(f_1, \ldots, f_m \).

\[|I| = m \leq \frac{\binom{m}{k}}{k!}. \]

Thm 2. Let \(p \) be a prime and \(L \leq \mathbb{Z}_p = \mathbb{F}_p \). Let \(I \leq \mathbb{Z}_p \) be s.t. \(|I| \) is a divisor of \(L \), \(|I| = 1 \pmod{p} \).

Then \(|I| \leq \frac{\binom{m}{k}}{k!} \).

\(F \) is \(L \)-intersecting. For Thm 1 in \(L \), we can find \(p \mid L \), \(L \equiv 0 \pmod{p} \), by Thm 2.

Proof: All operations are \(\pmod{p} \).

Define a polynomial \(f_i(x) \) over \(\mathbb{F}_p \) for each \(A_i \in F = \bigcap A_i \).

Then we have:

\[f_i(I_{\mathbb{F}_p}) = \prod (x_i, x_i \in I_{\mathbb{F}_p} - 1) = 0 \text{ where } |A_i| \neq L. \]

\[f_i(I_{\mathbb{F}_p}) = \prod (x_i, x_i \in A_i - 1) = 0. \text{ } \forall \mathbb{F}_p - 1. \]

\(f_1, f_2, \ldots, f_m \) are linearly independent over \(\mathbb{F}_p \).

Similarly, we replace each \(f_i(x) \) by \(f_i(x) \), where each factor \(x_i \) is replaced by \(x_i \). As we only consider \(\mathbb{F}_p \) vectors, this does not affect the above properties. So \(f_1, \ldots, f_m \) remains linearly independent, which we are generated by monomials \(\prod x_i \) with \(I \in \mathcal{I}_n \), \(|I| \leq |I'| \).

\[|I| \leq m \leq \text{dimension} \leq \frac{\binom{m}{k}}{k!}. \]
Application:
We have constructed a graph on \(n = (p^3) \) vertices, which does not contain any clique or independent set of size \(k \).
\[k \left(k-1; \binom{k}{2} \right) > \binom{k}{2} = \frac{k^2}{2} \]

We will improve the number of vertices to \(n \approx k^{2 \log \log k} \).

Thm 3 (Frankl-Wilson): For any prime \(p \), there is a graph \(G \) on \(n = (p^3) \) vertices, such that the size \(k \) of maximum clique or independent set in \(G \) is at most \(\frac{\log (p^3)}{\log \log (p^3)} \).

Proof: \(G = (V, E) \) is defined as follows:
\[V = \left\{ \binom{p^3}{2} \right\} \text{ and for } A, B \in V, \text{ if } \{A, B\} \in E \text{ iff } |A \cap B| = p-1 \text{ (mod } p) \]

1) Consider a maximum clique, say with vertices \(A_1, \ldots, A_k \).
\[|A_i \cap A_j| = p-1 \text{ (mod } p) \quad i \neq j \]
\[|A_i| = p^3 - 1 = p^3 - 1 \text{ (mod } p) \]

We can use Thm 2 by letting \(L = \left\{ 0, 1, \ldots, p-2 \right\} \subseteq \mathbb{Z}_p \), so \(k \leq \frac{p^3}{\log (p^3)} \).

2) Consider a maximum stable set, say \(B_1, \ldots, B_k \).
\[|B_i \cup B_j| = p-1 \text{ (mod } p) \quad i \neq j \]
\[|B_i| = p^3 - 1 \]

So \(|B_i \cup B_j| \in L = \left\{ p-1, 2p-1, \ldots, (p-3)p + 1 \right\} \), \(|L| = p+1 \) and \(B_1, \ldots, B_k \) are \(L \)-intersecting.

By Thm 1, \[k \leq \frac{p^3}{\log (p^3)} \]

\[n = \left(\frac{p^3}{p^3} \right) \leq p \Theta(p^3) \]
\[k = \frac{p^3}{\log (p^3)} \]
\[\log k = \log p \log \log p \leq \log p \log \log p \leq \log p \]
\[p \geq \frac{\log k}{\log \log p} \]
\[p = \frac{\log k}{\log \log p} \approx \frac{\log k}{\log \log p} \]
\[n \approx p \Theta(p^3) = (p^3) \leq k^p \leq k^{\log \log p} \]

Thm 5: \(p(k, k) \geq p \)
Def: Given a set \(S \subseteq \mathbb{R}^n \), (bounded) the diameter of \(S \) is denoted as
\[
\text{Diam}(S) = \sup \{ d(x, y) : x, y \in S \}
\]

Euclidean distance between \(x \) and \(y \) in \(\mathbb{R}^n \).

Borsuk's Conjecture: Can every bounded \(S \subseteq \mathbb{R}^d \) be partitioned into \(d+1 \) sets of strictly smaller diameter?

Known: \(S = \text{Sphere} \), \(S = \text{a smooth convex body} \), \(d = 3 \).

In 1993, Kahn-Kalai disproved this conjecture.

Lemma: For prime \(p \), there exists a set of \(\frac{1}{2} \binom{4p}{p} \) vectors in \(\mathbb{F} = \mathbb{F}_p, 13^{4p} \), such that every subset of size \(2 \binom{4p}{p} \) vectors contains an orthogonal (balanced) pair of vectors.

Proof: Let \(Q = \{ I \in \binom{4p}{p} : I \in \mathbb{F} \} \).

For \(A \subseteq Q \), define a vector \(\vec{v}^A \in \mathbb{F}^{4p} \) by
\[
\vec{v}^A_i = \frac{1}{\sqrt{2}} \chi_{I, \mathbb{F}}, \quad x \in I.
\]

Let \(\mathcal{B} = \{ \vec{v}^I : I \in Q \} \).

Compute:
\[
\vec{v}^I \cdot \vec{v}^J = |I\cap J| - |I\Delta J| = |I\cap J| + |I\Delta J| = 4p - 2|I\cap J|
\]

so \(\vec{v}^I \perp \vec{v}^J \iff |I\cap J| = 2p = |I| + |J| - 2|I\cap J| = 4p - 2|I\cap J| \Rightarrow |I\cap J| = p \).

Note that \(|I| + |J| = 2p \Rightarrow 1 \leq |I\cap J| \leq 2p - 1 \). \(\forall I \cap J \), it holds \(|I\cap J| \neq 0 \) (mod \(p \)).

Claim: For any subset \(G \subseteq \mathcal{B} \) without orthogonal pairs, the \(|G| \leq \frac{p}{k^2} \binom{4p}{p} \) \((p) \).

Proof: Let \(A \in G \), \(|A| = 2p \equiv 0 \) (mod \(p \)).

Taking \(L = \{ i, j, \ldots, p+1 \} \leq 2p \).

By Thm. 2, \(|G| \leq \frac{p}{k^2} \binom{4p}{p} \leq 2 \frac{p^{4p}}{p^{p-1}} \).

Claim2 (Exercise)

Thm. 4: For \(d \) sufficiently large, there exists a bounded \(S \subseteq \mathbb{R}^d \) (in fact a finite set) so that any partition of \(S \) into \(d+1 \) contains
a part of the same character.
As $1.1^{11} >> d + 1$, this disproves Borsuk's conj.

Proof: Let G be from the Lemma.

(Def: A tensor product of vector $\vec{v} \in \mathbb{R}^n$ is
\[\vec{w} = \vec{v} \otimes \vec{v} \in \mathbb{R}^{n^2} \] by $W_{ij} = v_i \cdot v_j$, $1 \leq i,j \leq n$.)

Let $X = \{ \vec{x} \in \mathbb{R}^n : \vec{x} \in F \}$ be \mathbb{R}^{n^2}, $n = 4p$.

\cdot $\vec{w} \in F \cap F'$.
\[\|\vec{w}\| = n^2 \Rightarrow \|\vec{w}\| = n. \]

\cdot $\vec{w}, \vec{w}' \in \mathbb{R}^n$, say $\vec{w} = \vec{v} \otimes \vec{v}$, $\vec{w}' = \vec{v} \otimes \vec{v}'$

\[\vec{w} \cdot \vec{w}' = \sum\overline{W_{ij} W_{ij}'} = \sum\overline{V_{ij} V_{ij}'} = (\overline{V \cdot V'})^2 \]

\cdot $\vec{w} \perp \vec{w}'$ if $\vec{w} \cdot \vec{w}' = 0$

\[\|\vec{w} - \vec{w}'\|^2 = \|\vec{w}\|^2 + \|\vec{w}'\|^2 - 2 \vec{w} \cdot \vec{w}' = 2n^2 - 2 (\overline{V \cdot V'})^2 \leq 2n^2. \]

\[\Rightarrow \text{Diam}(X) = \{\mathbb{R}\} \]

By the lemma, any subset of $2(\frac{4^p}{p-1})$ vectors in F, contains
an orthogonal pair. Thus, any subset of $2(\frac{4^p}{p-1})$ vectors in X
contains a pair \vec{w}, \vec{w}', of max distance = \mathbb{R}. Therefore, if we want to decrease the diameter, we must partition
X into sets of size less than $2(\frac{4^p}{p-1})$, and so the number of parts
\[\frac{\|X\|}{2(\frac{4^p}{p-1})} = \frac{\frac{1}{2}(\frac{4^p-1}{p})}{2^{(\frac{4^p}{p-1})}} = \frac{1}{2} \cdot \frac{(4^p)\cdots (4^{p+1})}{2p(2p+1)\cdots \text{p}} \geq \frac{1}{4} \cdot \frac{3}{2} \Rightarrow 2 \cdot (\frac{3}{2}) \Rightarrow \text{111} \]

$X \leq Rd = \mathbb{R^n}$, $d = n^2 = (4p)^2 = 16p^2$. #
Recall: Sperner's Thm: For any antichain $F \subseteq 2^{[n]}$ (i.e., $\forall A, B \in F, A \cap B = \emptyset$) then we have $|F| \leq \binom{n}{\lfloor n/2 \rfloor}$.

In fact, we proved a stronger result:

LYM-Inequality: For any antichain $F \subseteq 2^{[n]}$, \[\sum_{A \in F} \frac{1}{|A|} \leq 1 \]

Today, we study an even stronger result, namely, the Bollobás's Thm (extremal set theory)

Bollobás's Thm: Let A_1, A_2, \ldots, A_m and B_1, B_2, \ldots, B_m be two sequences of sets such that:

- $A_i \cap B_j \neq \emptyset$, $\forall i, j$
- $A_i \cap B_i = \emptyset$, $\forall i$

Then \[\sum_{i=1}^{m} \frac{1}{|A_i \cap B_i|} \leq 1 \], where $a_i = |A_i|$ and $b_i = |B_i|$

Exercise: Prove that Bollobás's Thm can imply LYM-Inequality. ($b_i = a_i$)

Proof: Let $x = \bigcup_{i=1}^{n} (A_i \cup B_i)$, we prove by induction on $|x| = n$.

When $n = 1$, clearly \[\emptyset \]

so we assume it holds for $|x| = m$. For each $x \in x$, define \[I_x = \{ s \subseteq m : x \in A_s \} \]

Define \[F_x = \{ A_s : s \in I_x \} \cup \{ B_s - x_j : s \in I_x \} \]

Note that any set of F_x doesn't contain x, so F_x has less than n elements.

Hence we apply induction hypothesis for each F_x. (Check F_x satisfies the condition)

\[\sum_{x \in x} \frac{1}{|A_s|} \leq 1 \]

We summing up the above inequalities for all $x \in x$

\[\sum_{x \in x} \sum_{s \in I_x} \frac{1}{|A_s|} \leq n \]

For each i, it contributes either 0 or $\frac{1}{|A_i|}$ or $\frac{1}{|A_i \cap B_i|}$ to each x.\[\sum_{x \in x} \]
The term $\frac{ax + by}{\overline{ax}}$ corresponds to points $x \in A \cup B \cdot y \cdot x \in B \cdot$, thus this term appears exactly $(n = a_x - b_y)$ times.

While, the term $\frac{ax + by}{\overline{ax}}$ corresponds to points $x \in A \cap y \cdot x \in B \cdot$, thus this term appears exactly b_x times.

$\Rightarrow \frac{1}{\sum a_x} \left[(n - a_x - b_y) \left(\frac{ax + by}{\overline{ax}} \right) + b_x \left(\frac{ax + by}{\overline{ax}} \right) \right] \leq n.

Since $\frac{k}{b} = \frac{k - b}{b}$, we get $\frac{1}{\overline{ax}} \Rightarrow \frac{ax + by}{\overline{ax}} = \frac{a_x + b_y}{b_x}$.

Plugging in, $\sum n \cdot \left[(n - a_x - b_y) \left(\frac{ax + by}{\overline{ax}} \right) + \frac{a_x + b_y}{b_x} \right] \leq n$.

$\Rightarrow \sum \frac{n - a_x - b_y}{\overline{ax}} \leq n$.

#

Def: Let F be a field, a set $A \subseteq F^n$ is in general position, if any n vectors in A are linearly independent over F.

E.g. for $a \in F$, define $\text{span}(a) = \{a^0, a^1, a^2, \ldots, a^n\} = F^n$ (moment curve)

Then $\text{span}(a) \cap A = F \{a \in F\}$ is in general position. $\{4|\text{basis}\} + 3\times$

Next, we use the so-called "general position" argument to prove a version of Bollobás's Thm, which is weaker than the previous one. But, on the other hand, the condition can be generalized to $A_i \cap B_j \neq \emptyset$ for $i < j$.

Bollobás's Thm (the skew version)

Let A_1, \ldots, A_m be sets of size 1 and B_1, \ldots, B_m be sets of size s, such that:

- $A_i \cap B_j \neq \emptyset$, $i < j$
- $A_i \cap B_i = \emptyset$, $i < j$

Then, $m \leq \binom{1 + t}{s}$.
Proof (by Lovász): Let \(X = \mathcal{Y}(A_1 \cup V B_i) \)

Take a set \(V \subseteq \mathbb{R}^{r+1} \) of vectors \(\bar{V} = (v_0, v, \ldots, v_r) \) such that
- \(V \) is in general position
- \(|V| = 1 \times 1 \).

Identify the elements of \(X \) with vectors in \(V \). \(X \leftrightarrow V \)
Hence, we will view \(A_i \) as a subset in \(V \) containing \(r \) vectors and \(B_j \) as a subset in \(V \) containing \(s \) vectors.

For each \(B_j \), define \(f_j (\bar{x}) = \prod_{v \in B_j} \langle \bar{v}, \bar{x} \rangle = \prod_{v \in B_j} (v_0 x + \ldots + v_{r-1} x_r) \).

For \(x \in \mathbb{R}^{r+1} \), note that \(f_j (x) = 0 \iff \langle \bar{v}, \bar{x} \rangle = 0 \) for some \(v \in B_j \).

Consider the subspace \(\text{span} A_i \), which is spanned by the \(r \) vector in \(A_i \).
Since \(A_i \subseteq V \subseteq \mathbb{R}^{r+1} \) and \(V \) is in general position, we see that all \(r \) vectors in \(A_i \) are linearly independent and thus \(\dim(\text{span} A_i) = r \).

So, \((\text{span} A_i)^\perp \) has dimension 1. Choose \(a_i \in (\text{span} A_i)^\perp \) for \(i = 1, \ldots, m \).
Then for each \(\bar{v} \in V \), \(\langle \bar{v}, \bar{a} \rangle = 0 \iff \bar{v} \in \text{span} A_i \).
\(\forall \bar{v} \in A_i \)
\((\text{dim.} \bar{v} + A_i, f_j / VA_i \) has \(r+1 \) vectors in \(V \), which must be linearly indep.
\(\land \text{contradicts to } \bar{v} \in \text{span} A_i \).

Combining \(\odot \) and \(\oplus \), \(f_j (\bar{a}) = \prod_{v \in B_j} \langle \bar{v}, \bar{a} \rangle = 0 \iff A_i \cap B_j \neq \emptyset \).
\(\Rightarrow \sum_{j=1}^{m} f_j (\bar{a}) = 0, \forall i \in \mathbb{N} \)
\(f_j (\bar{a}) \neq 0 \) (since \(A_j \cap B_j = \emptyset \)), \(\forall j \).

This shows that \(f_1, \ldots, f_m \) are linearly indep. \((f_j (\bar{a})) = \left(\begin{array}{c} \vdots \ 0 \ \vdots \end{array} \right) \)

Next, we give an upper bound on the dimension of the space containing \(f_1, \ldots, f_m \).
Recall: \(f_j (x) = \prod_{v \in B_j} (v_0 x + \ldots + v_{r-1} x_r) \). It is homogeneous with degree \(s = |B_j| \) and \(r+1 \) variables \((x_0, x_1, \ldots, x_r) \). So this polynomial space can be generated by all monomials of follows:
\(x_0^{i_0} x_1^{i_1} \cdots x_r^{i_r}, \text{ where } i_0 + i_1 + \cdots + i_r = s, \ i_r > 0 \).
\(\Rightarrow (r+2) \choose (r+1) = (r+1) \choose r \).

There are \((r+1) \choose r \) many solutions !. So \(m \leq \text{the dimension} = (r+1) \).
EVERYTHING LET'S HEARTBEAT

Subspace version: V_1, \ldots, V_m be subspaces of dimension $r \leq \ldots \leq \ldots \leq s$.

\[V_i \cap V_j = \emptyset, \quad i \neq j \Rightarrow m \leq \binom{r+s}{r}. \]

(29th)

12.21

Covering by complete bipartite subgraphs.

The following question was motivated by telephone communication problem.

Q: Determine the minimum $m = m(n)$ s.t. the edge set $E(K_n)$ can be expressed as a disjoint union of edge sets of m complete bipartite subgraphs of K_n.

\[K_5 = \star + K_{1,4} + K_{1,3} + K_{1,2} + K_{1,1}. \]

Fact: $m(n) \leq n-1$.

Pf: Because we can express $E(K_n)$ as a disjoint of $n-1$ stars. #

Rmk: $K_5 = \star + \star + \star + \cdots + \star$.

We point out that there exist other partitions of $E(K_n)$, using $n-1$ complete bipartite subgraph, which is not isomorphic to the star-decomposition.
Fact 1: For any n x n matrices M_1, M_2, \(\text{rank}(M_1 + M_2) \leq \text{rank}(M_1) + \text{rank}(M_2) \) on n vertices.

Def: The adjacency matrix of a graph H is an $n \times n$ matrix $A = (a_{ij})_{n \times n}$ such that $a_{ij} = 1$, $i \neq j \in E(H)$, and $a_{ii} = 0$ (so A is symmetric).

Thm (Graham-Pollak): $m(n) \geq n - 1$.

Proof: Suppose the complete bipartite graphs B_1, B_2, \ldots, B_m disjointly cover all edges of K_n, i.e., $E(K_n) = E(B_1) \cup \cdots \cup E(B_m)$.

Let X_i and Y_i be the color classes of B_i, i.e., all edges of B_i go between X_i and Y_i. For each B_i, we define an $n \times n$ matrix $A_i = (a_{ij}^{(B_i)})_{n \times n}$ by $a_{ij}^{(B_i)} = \{ 1 \quad \text{if } i \in X_k \cap Y_k \\
0 \quad \text{otherwise} \}$.

\[
\begin{bmatrix}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

Claim: $\text{rank}(A_i) = 1$, $\forall i \leq m$.

Proof: Because $B_i = (X_i, Y_i)$ is complete, the i^{th} row (for $i \in X_i$) are identical.

Let $A = A_1 + A_2 + \cdots + A_m$. As each $ij \in E(K_n)$ belongs to exactly one of the graphs B_i, we have $a_{ij}^{(B_1)} = 1$, $a_{ij}^{(B_2)} = 0$ or $a_{ij}^{(B_i)} = 0$, $a_{ij}^{(B_i)} = 1$.

$\Rightarrow A + A^T = J_n - I_n$, where $J_n = (1)_{n \times n} = A(K_n)$.

Note that $\text{rank}(A) \leq \sum_{i=1}^m \text{rank}(A_i) = m$.

It suffices to prove: $\text{rank}(A) \geq n - 1$. Suppose a contradiction that $\text{rank}(A) < n - 1$. Let A' be an $(n+1) \times n$ matrix obtained from A by adding an extra row $(1, 1, \ldots, 1)$.

$\Rightarrow \text{rank}(A') \leq \text{rank}(A) + 1 < n - 1 + 1 = n$. Therefore, $\text{rank}(A') = n - 1$.

So, $\text{rank}(A') = n - 1$.

Then there exists non-zero vector $\mathbf{x} \in \mathbb{R}^n$ s.t. $A^T \mathbf{x} = \mathbf{0}$.
$\implies A \mathbf{x} = 0$ & $\sum_i x_i = 0$.

Consider $\mathbf{x}^T (A + A^T) \mathbf{x} = \mathbf{x}^T (I_n - I_n) \mathbf{x}$
$\implies 0 = \mathbf{x}^T (A \mathbf{x}) + (A^T \mathbf{x}^T) = \mathbf{x}^T (I_n \mathbf{x}) - \mathbf{x}^T I_n \mathbf{x} = 0 - \frac{2}{E} x_i^2 < 0$. contradiction

Thus, $\text{rank}(A) > n - 1$.
$\implies \min(\text{rank}) > n - 1$.

Finite Projective Plane (FPP)

Def: Let X be a finite set and $\mathcal{L} \subseteq 2^X$ be a family. The pair (X, \mathcal{L}) is called a finite projective plane (FPP for short).

if it satisfies three axioms:

1. **(P0)** There exists a 4-set $T \subseteq X$ s.t. $|T \cap L| \leq 2$ for all $L \in \mathcal{L}$.
2. **(P1)** $\forall L_1, L_2 \in \mathcal{L}$ has $|L_1 \cap L_2| = 1$
3. **(P2)** $\forall x_1, x_2 \in X$, there exists exactly one subset $L \in \mathcal{L}$ with $\{x_1, x_2\} \subseteq L$.

We call elements of X as points and the sets in \mathcal{L} as lines.

\implies **(P1):** 两条线交于一点
(P2): 两点确定一条直线

PO?

(not-interesting)

So we explain for (P0) - (P2).

(P1) says: \forall 2 lines intersect at exactly one point

(In geometry, parallel lines do not!)

(P2) says: \forall 2 points a, b determine a line, denoted by ab.

(P0) is used to exclude some not-interesting cases.
The Fano plane (the smallest FPP)

\[\begin{align*}
\{1, 2, 3\} & \quad \{3, 4, 5\} & \{5, 6, 1\} \\
\{1, 4, 7\} & \quad \{3, 6, 7\} & \{2, 5, 7\} \\
\{2, 4, 6\} &
\end{align*} \]

\(\times \) 7 points & 7 lines, each line with 3 points.

Prop 1. Let \((X, L)\) be a finite projective plane, then for any 2 lines \(L, L' \in L\), \(|L | = |L'|\).

Proof: Claim: \(\exists x \neq x' \) with \(x \not\in L \cup L' \)

(I): Let \(F \leq X \) be from \((P_0)\). Then \(|F \cap L | \leq 2 \) & \(|F \cap L' | \leq 2 \).

If \(F \not\subset L \cup L' \), then we are done, so \(F \not\subset L \cup L' \) with \(|F \cap L | = |F \cap L' | = 2 \).

Let \(F \cap L = \{a, b\} \), \(F \cap L' = \{c, d\} \).

Let \(L_1 = \overline{ac} \), \(L_2 = \overline{bd} \). Let \(z \in L_1 \cap L_2 \) be the unique point.

If \(z \not\in L \), \(z \not\in L' \), then again we are done.

So we assume \(z \in L \). \(\Rightarrow z \in L \cup L' \). But \(a \not\in L \cup L' \).

By \((P_1)\), \(z = a \in L_2 \), \(b \in L \). \(\Rightarrow b \in L \ \wedge F \not\subset \). a contradiction \(\not\subset \) \((P_0)\)!

Now fix \(x \not\in L \cup L' \). We define a mapping \(\varphi : L \to L' \) as follows: for \(y \in L \), let \(\varphi(y) \in L' \) be the unique point in \(L' \setminus L \).

Next we show \(\varphi \) is bijective.

- **\(\varphi \) is injective:** If \(\Rightarrow a_1, a_2 \in L \) st. \(\varphi(a_1) = \varphi(a_2) \)

then \(a_1, a_2, \varphi(a_1), x \) are in the line \(\varphi(a_1) \cap \varphi(a_2) = \overline{a_1a_2} \).

But \(\varphi(a_1), \varphi(a_2) \in \varphi(a_1) \setminus L \), a contradiction to \((P_2)\).

- **\(\varphi \) is surjective:** For any \(b \in L' \), let \(a \) be the unique point in \(\overline{b} \cap L \). \(a, b, x \) are in the line \(\overline{a} = \overline{b} \).

\(\Rightarrow b \in L \cap L' \Rightarrow \varphi(a) = b \).

\(\Rightarrow \varphi \) is bijective. \(\Rightarrow |L | = |L'| \). #
Def: Let \((X, \mathcal{L})\) be a finite projective plane. The order of \((X, \mathcal{L})\) is the number \(141 - 1\) for \(X \in \mathcal{L} \subseteq \mathcal{L}.

Prop. 2: Let \((X, \mathcal{L})\) be a FPP of order \(n\). Then

(i) exactly \(n+1\) lines pass through each point \(x \in X\).

(ii) \(|X| = n^2 + n + 1\).

(iii) \(|\mathcal{L}| = n^2 + n + 1\).

Proof:

(i) Consider \(X \times X\). Let \(F\) be the 4-set satisfying (P0).

\[F = \{a, b, c, d\}\]
Let \(a, b, c, d \in \mathcal{L}\) be distinct from \(x\).

- Then, at least one of lines \(ab\), \(ac\) doesn't contain \(x\). (otherwise \(a, b, c, x\) are in the same line, contradicting (P0).)

- There exists a line \(L\) with \(x \notin L\). Let \(L = \{x_0, x_1, \ldots, x_n\}\); then \(x_0\) defines \(n+1\) lines.

- On the other hand, any line containing \(x\) must intersect \(L\) at some point; say \(x_c\). Therefore, there are exactly \(n+1\) lines containing \(x\).

(ii) Choose some line \(L = \{x_0, x_1, \ldots, x_n\} \in \mathcal{L}\) and a point \(a \in X\) with \(a \notin L\). Let \(L_i = \overline{ax}\) for \(i = 0, 1, \ldots, n\).

By (P1), any two lines \(L_i, L_j\) intersect at a single point, that is a. So \(|L_0 L_1 U \ldots U L_n| = n(n+1) = n^2 + n + 1\).

It remains to show that any \(x \in X - \{x_0\}\) must belong to \(L_0 L_1 U \ldots U L_n\).

By (P1), line \(L_i\) must intersect \(L\) at some point \(x_i\), then \(\overline{ax} = \overline{ax_i} = L_i \Rightarrow x \in L_i\).

\[\Rightarrow x = L_0 L_1 U \ldots U L_n\.

\[\Rightarrow |X| = n^2 + n + 1.\]

(iii) Exercise.
Def: The incidence graph of a FPP (X, L) is a bipartite graph G with parts X and L, where $x \in X$ is adjacent to L if $x \in L$.

![Incidence graph diagram]

From this we can prove that $|X| = |L|$. (Note: $|X| = |L| = 12$ in this case.)

Def: The dual (L, X) of a FPP (X, L) is obtained by taking the incidence graph G of (X, L) and interpreting its points in (X, L) as the lines in the new system and the lines in (X, L) as the points in the new system, swapping the roles of "points" and "lines".

Prop: If $x \in X$, then $L_x = \{ L \in L : x \in L \}$.

$X = \{ L_x : x \in X \}$.

Prop 3: The dual (L, X) is also a FPP.

Proof: We point out that for $i = 1, 2$,

(P_i) for (X, L) gives rise to (P_i^*) for (L, X).

$(P_1) \Rightarrow (P_2)^*$: $\forall L, L_2 \in L$, $\exists ! L_x \in X$, s.t. $L \in L_x \Leftrightarrow x \in L \land L_2 \Leftrightarrow x \in L \land L_2$.

$(P_2) \Rightarrow (P_1)^*$: $\forall L_2, L_2 \in L$, $\exists ! L_x \in X$, s.t. $L \in L_x \Leftrightarrow x \in L \land L_2 \Leftrightarrow x \in L \land L_2$.

$(P_0)^*$: It suffices to show that (P_0) holds for (L, X), that is

we need to find 4 lines L_1, L_2, L_3, L_4, s.t. $\forall 3$ of them have a common point!

Let $F = \{ a, b, c, d \}$ be the 4-set satisfying (P_0) for (X, L).

Note that for such F, $|F \land L| \leq 2$, $\forall L \in L$.

Since any 3 points of F do not lie on a line, we can define 4 distinct lines as follows:

$L_1 = ab$, $L_2 = ac$, $L_3 = ad$, $L_4 = bc$.

By Property of F, for any 3 lines of $\{ L_1, L_2, L_3, L_4 \}$ (by symmetry, say L_1, L_2, L_3),

we see $L_1 \land L_3 = \{ a \}$, $L_2 \land L_3 = \{ b \} \Rightarrow L_1 \land L_2 \land L_3 = \emptyset$. This proves \Box. #
Think: A finite projective plane of order n exists whenever a field with n elements exists.

And we know a field with n elements exists if $n = p^k$ for a prime p.

Q: $n = p^k$, exists? NO known.

An Application of FPP:

Recall: A 4-free graph G on m vertices has $e(G) = \frac{m}{2} \left(1 + \frac{1}{m-3} \right)$.

Think: For infinitely many integers m, there exists a 4-free graph on m vertices and with at least $0.35 m^2$.

Proof: Take a FPP (X, L) with order n and take its incidence graph G.

G has $m = |X| + |L| = 2(n^2 + n + 1)$ vertices and $e(G) = \frac{n}{3} \cdot d_G(x) = \frac{1}{3} (n+1)(n^2 + n + 1)$.

$e(G) = (n+1)(n^2 + n + 1) > (n^2 + n + 1)^{\frac{3}{2}} = (n^3 + n^2 + n + 1)^{\frac{3}{2}} \geq 0.35 m^2$.

why does such G have NO C_4?

If existing, then in the language of the FPP, it says there exist 2 points x, x' and 2 lines l_1, l_2 such $x \in l_1$, $x' \in l_2$ contradiction to $(P1)$ and $(P2)$.

#