大会讲者




综述进展报告讲者




  • 综述进展报告讲者1:鲍虎军,浙江大学CAD&CG国家重点实验室

  • 报告题目:走向融合的混合现实和人工智能

  • 报告摘要:混合现实与人工智能是当前信息技术的二个前沿研究热点。前者旨在将虚拟环境和现实世界融合起来,既可将现实环境信息接入虚拟环境来增强虚拟环境的真实性,又可将虚拟环境融合到现实环境中来增强用户对现实环境的感知。后者则从分析理解复杂的获取信息,使得机器具备类人的智能性(如能识别目标,理解场景和上下文语义,能推理等)。有赖于计算、显示和智能处理技术的进步,混合现实技术近年得到了快速的发展。反之,混合现实所拥有的三维几何及其空间属性信息,非常有助于提升智能系统对复杂目标和场景的识别和理解。本报告将宏观地展现这二大前沿研究方向相互支撑、逐渐走向融合的发展趋势,并介绍我们正在开展的相关研究工作,探讨所面临的技术挑战。

  • 讲者简介:鲍虎军,国家杰出青年基金获得者,教育部长江学者特聘教授,浙江大学信息学部主任,计算机学会常务理事与计算机辅助设计和图形学专业委员会主任。所领导的团队曾获首届国家创新研究群体科学基金的资助,并作为首席科学家,先后二次承担了国家重大基础研究发展规划(973计划)项目虚拟现实方面的研究。近年来主要从事计算机图形学、计算机视觉和混合现实等方面的研究,在微分域几何计算、复杂虚拟场景的实时高保真呈现、虚实场景的实时视觉注册融合等理论和方法方面取得了重要进展,成功研发了混合现实支撑软件平台,包括虚拟环境实时绘制引擎、增强现实三维注册融合引擎、实物表面多投影融合拼接引擎、人机交互和二次开发环境等模块,部分成果分别获国家自然科学二等奖和高等学校优秀成果科技进步一等奖。四篇所指导的博士学位论文分别被评为全国百篇优秀博士论文和计算机学会优秀博士论文。

  • 个人主页:www.cad.zju.edu.cn/home/bao



  • 综述进展报告讲者7:陈宝权,北京大学/山东大学

  • 报告题目:基于感知的计算机图形

  • 报告摘要:传统的计算机图形基于数学表达或交互设计形成图形的描述,接下来的图形处理主要基于图形的基本元素及其几何属性,而对图形所描述物体或场景的结构语义以及物理、功能、社会属性等关注和利用甚少。在当今各类传感器和传感手段快速发展的时期,图形的描述越来越多的获取于现实场景,其语义属性更具现实意义。由此,未来的计算机图形学发展可能会体现如下的趋势:一方面,未来的图形越来越来源于感知;另一方面,对现实世界的感知也越来越自然的延伸和扩展到对图形的感知。图形与现实之间的深度融合将会是提升视觉智能的核心问题,其受益者不仅是人,更是未来越来越多的移动智能体,如无人车、无人机、机器人等。视觉智能的应用也不仅针对现实场景的处理,会越来越多体现在创意设计与制作以及数据可视化。此报告试图从以上方面梳理近年来图形学研究的进展和趋势,抛砖以引玉。

  • 讲者简介:陈宝权,北京大学前沿计算研究中心执行主任,信息科学技术学院教授,长江学者,杰青,兼山东大学教授。纽约州立大学计算机博士。研究领域为计算机图形学与数据可视化。现任/曾任ACM TOG/IEEE TVCG编委、IEEE VIS/SIGGRAPH Asia指导委员会成员,曾任IEEE Vis 2005、ACM SIGGRAPH Asia 2014大会主席。获2003年美国NSF CAREER Award,2005年IEEE可视化国际会议最佳论文奖,和2014年中国计算机图形学杰出奖。担任973项目“城市大数据计算理论与方法”首席科学家,并任北京电影学院未来影像高精尖创新中心首席科学家。

  • 个人主页: www.cs.sdu.edu.cn/~baoquan



  • 综述进展报告讲者2:童欣,微软亚洲研究院

  • 报告题目:室内三维场景的理解与建模

  • 报告摘要:室内场景的三维建模与理解是近年来图形学和计算机视觉中一个热点的研究问题。在这个报告中,我尝试将今年来的研究成果作一梳理,并对该领域挑战、问题和趋势进行总结和讨论。

  • 讲者简介:童欣博士现任微软亚洲研究院首席研究员,网络图形组研究主管。童欣博士于1999年毕业于清华大学计算机系获博士学位后加入微软亚洲研究院。他的研究兴趣为计算机图形学和计算机视觉,包括纹理合成,材质建模,基于图像的建模和绘制,人脸动画,和数据驱动的几何处理。童欣博士曾担任1993年Pacific Graphics论文主席,多届SIGGRAPH与SIGGRAPH ASIA 论文委员会委员。现任IEEE TVCG和ACM TOG编委。

  • 个人主页: www.microsoft.com/en-us/research/people/xtong



  • 综述进展报告讲者4:王立峰,51VR

  • 报告题目:无人驾驶图形仿真平台

  • 报告摘要:本报告以目前最流行的无人驾驶为例,阐述图形学在人工智能中的应用及地位,报告从无人驾驶的关键三部分-感知、决策及控制-讲述了计算机图形学在此可以发挥的关键作用,而VR、AR作为辅助手段也在其中有很大的研究意义及潜在的广泛商业前景。

  • 讲者简介:王立峰博士现为51VR CTO兼首席科学家,主要负责人工智能虚拟数据训练集及仿真测试平台的研发。王立峰于1999年毕业于浙江大学CAD&CG国家重点实验室并获计算机应用博士学位,同年7月入职微软亚洲研究院,曾任网络图形组研究员及产品孵化组项目负责人。任职期间,王立峰博士在Siggraph、CVPR、TVCG、TOG等顶级期刊和会议发表论文数十篇,2003年的论文结果更成为当年Siggraph杂志封面。2006年9月王立峰博士加入Autodesk中国研发中心并创建传媒及数字娱乐部门,之后又同时领导云计算部门及研究部门。在11年的时间里,他主导数个顶级图形引擎、三维建模技术及云计算平台的研发,包括工业界广泛应用并熟知的3dsMax、Maya、MudBox、Flame/Smoke等产品,以及Autodesk Forge云平台及RAAS等云服务。王立峰博士个人拥有16项美国专利,其专利成果在微软及Autodesk的产品中得到广泛应用。

  • 公司主页:www.51hitech.com/site/index



  • 综述进展报告讲者5:王进,虹软(ArcSoft)公司

  • 报告题目:基于混合摄像头的感知和表达

  • 报告摘要:随着Apple iPhone X的发布,智能手机中摄像头表现为更多的模式: 深摄、双摄、三摄、单摄、IR等,这为计算机视觉、计算机图形学、各类AI算法的研究和技术落地提供了更广阔的空间和平台。近来涌现了一批可产品化的技术研究成果,本报告将就人物感知、深度恢复、对象识别、混合绘制等方向的前沿研究成果进行汇报与展望。

  • 讲者简介:王进,虹软(ArcSoft)公司CTO兼首席科学家,2003年博士毕业于浙江大学CAD&CG国家重点实验室。研究兴趣为计算机图形学、计算机视觉、人工智能、端+云智能平台,发表和在审相关领域美国专利80余项、国内专利20余项,研发的技术成果已成功应用于各种手机、数码相机等嵌入式设备100多亿台,其中智能移功设备50多亿台。

  • 公司主页: www.arcsoft.com.cn



  • 综述进展报告讲者3:胡瑞珍,深圳大学

  • 报告题目:基于功能表示和应用的三维形状分析

  • 报告摘要:计算机图形学的一个主要目标是为设计和模拟真实或者想象的物体提供便捷的工具,而对于这些工具的建立,物体功能性分析和理解是至关重要的。由于大多数人造物体都是为了服务于某一项特定的功能,物体的几何特性、它们在环境中的组织方式以及它们与周围物体的交互方式往往反映了其功能。因此,近些年来,有越来越多的三维形状分析方面的工作旨在通过各种不同的线索来提取物体和场景的功能信息。在这一报告中,我将对近些年在三维物体和场景功能性分析方面的工作进展进行了梳理和组织。具体地,我将给出了一个对于功能性的一般性定义,并在此基础上对现有工作进行了分类,以有助于对功能性分析方面工作的理解。同时,我还将列举一系列受益于功能性分析的应用,并讨论当前存在的挑战和潜在的未来研究方向。相应综述发表在Eurographics State-of-the-Art Reports (STARs) 2018。

  • 讲者简介:胡瑞珍,女,博士,深圳大学计算机与软件学院助理教授,中科协"青年人才托举工程"(2017-2019)入选者,深圳市海外高层次孔雀人才,深圳市南山区领航人才。2015年6月毕业于浙江大学数学系,取得理学博士学位,并获浙江省优秀毕业研究生称号。攻读博士学位期间,获国家留学基金委资助访问加拿大西蒙弗雷泽大学两年。研究方向为计算机图形学,特别是高层次形状分析、几何处理和模型制造。近些年的主要学术成果均发表在本领域国际顶级会议和期刊,研究课题连贯性强,已初步形成个人研究特色。截止目前,共发表16篇高水平论文,其中9篇发表在计算机图形学顶级会议/期刊ACM SIGGRAPH/ SIGGRAPH ASIA/TOG,3篇发表在计算机图形学国际权威期刊Computer Graphics Forum。担任The Visual Computer编委,Eurographics 2018, SIGGRAPH Asia Techinical Brief & Poster 2017, CAD/Graphics 2017, CVM 2017, ICVRV 2017, SIGGRAPH Asia Workshop 2016程序委员会成员。

  • 个人主页: csse.szu.edu.cn/staff/ruizhenhu



  • 综述进展报告讲者6:傅孝明,中国科学技术大学

  • 报告题目:几何映射计算理论与应用

  • 报告摘要:在科学研究、工程计算、文化娱乐中,三维模型数据扮演着越来越重要的角色。使用数学模型和算法来分析与处理三维模型数据的过程称作数字几何处理。常见的研究内容包括模型获取、模型重建、网格生成、形状分析与理解、映射计算和几何建模等。其中几何映射计算是一个重要的课题,它是许多计算机图形学应用的核心,比如网格参数化、网格变形、网格质量提高、六面体网格生成。本报告将从几何映射的基本知识开始,分析求解高质量映射的难点来源,介绍典型的解决思路、常见的技术方案。重点将介绍一些有趣的应用场景,比如VR实际行走,基于曲面的深度学习等。

  • 讲者简介:傅孝明,中国科学技术大学数学学院副研究员,2011年本科毕业于中国科学技术大学自动化专业,2016年6月在中国科学技术大学自动化系获得博士学位。自2012年起,傅孝明一直从事计算机图形学与数字几何处理方面的研究,主要是网格生成、映射计算及其在VR中的应用。在各向异性网格生成、几何映射计算、VR实际行走等方面取得了一定的成果,相关论文均发表在计算机图形学领域的重要国际期刊和会议上,包括SIGGRAPH、SIGGRAPH Asia、TVCG等。

  • 个人主页: staff.ustc.edu.cn/~fuxm



最新成果(Siggraph 2018)报告讲者



  • 论文题目:Numerical Coarsening using Discontinuous Basis Functions

  • 论文作者:Jiong Chen, Hujun Bao, Tianyu Wang, Mathieu Desbrun, Jin Huang

  • 论文摘要:In this paper, an efficient and scalable approach for simulating inhomogeneous and non-linear elastic objects is introduced. We show that numerical coarsening based on optimized non-conforming and matrix-valued shape functions allows for a more accurate simulation of heterogeneous materials with non-linear constitutive laws even on coarse grids, thus saving orders of magnitude in computational time compared to traditional nite element computations. The set of local shape functions over coarse elements is carefully tailored in a preprocessing step to balance geometric continuity and local material stiffness. In particular, we do not impose continuity of our material-aware shape functions between neighboring elements to significantly reduce the fictitious numerical stiffness that conforming bases induce; however, we require crucial geometric and physical properties such as partition of unity and exact reproduction of representative fine displacements to eschew the use of discontinuous Galerkin methods. We demonstrate that we can simulate inhomogeneous and non-linear materials significantly better than previous approaches, with no parameter tuning.

  • 报告人:陈炯,浙江大学

  • 报告人邮箱:chenjiong1991 AT 126 DOT com

  • 报告人简介:四年级博士生,主要兴趣是物理模拟。



  • 论文题目:Quadrangulation through Morse-Parameterization Hybridization

  • 论文作者:Xianzhong Fang, Hujun Bao, Yiying Tong, Mathieu Desbrun, Jin Huang

  • 论文摘要:We introduce an approach to quadrilateral meshing of arbitrary triangulated surfaces that combines the theoretical guarantees of Morse-based approaches with the practical advantages of parameterization methods. We first construct, through an eigensolver followed by a few Gauss-Newton iterations, a periodic four-dimensional vector field that aligns with a user-provided frame field and/or a set of features over the input mesh. A field-aligned parameterization is then greedily computed along a spanning tree based on the Dirichlet energy of the optimal periodic vector field, from which quad elements are efficiently extracted over most of the surface. The few regions not yet covered by elements are then upsampled and the first component of the periodic vector field is used as a Morse function to extract the remaining quadrangles. This hybrid parameterization- and Morse-based quad meshing method is not only fast (the parameterization is greedily constructed, and the Morse function only needs to be upsampled in the few uncovered patches), but is guaranteed to provide a feature-aligned quad mesh with non-degenerate cells that closely matches the input frame field over an arbitrary surface. We show on a large variety of examples that our approach is faster than Morse-based techniques by one order of magnitude, and significantly more robust than parameterization-based techniques on models with complex features.

  • 报告人:方贤忠,浙江大学

  • 报告人邮箱:fxzmin AT 163 DOT com

  • 报告人简介:浙江大学CAD&CG国家重点实验室博士研究生,主要研究方向为几何处理中的重网格化。



  • 论文题目:Progressive Parameterizations

  • 论文作者:Ligang Liu, Chunyang Ye, Ruiqi Ni, Xiao-Ming Fu

  • 论文摘要:We propose a novel approach, called Progressive Parameterizations, to compute foldover-free parameterizations with low isometric distortion on disk topology meshes. Instead of using the input mesh as a reference to defne the objective function, we introduce a progressive reference that contains bounded distortion to the parameterized mesh and is as close as possible to the input mesh. After optimizing the bounded distortion energy between the progressive reference and the parameterized mesh, the parameterized mesh easily approaches the progressive reference, thereby also coming close to the input. By iteratively generating the progressive reference and optimizing the bounded distortion energy to update the parameterized mesh, our algorithm achieves high-quality parameterizations with strong practical reliability and high efciency. We demonstrate that our algorithm succeeds using a massive test data set containing over 20712 complex disk topology meshes. Compared to the state-of-the-art methods, our method possesses higher computational efciency and practical reliability.

  • 报告人:傅孝明,中国科学技术大学

  • 报告人邮箱:fuxm AT ustc DOT edu DOT cn

  • 报告人简介:傅孝明,中国科学技术大学数学学院副研究员,2011年本科毕业于中国科学技术大学自动化专业,2016年6月在中国科学技术大学自动化系获得博士学位。自2012年起,傅孝明一直从事计算机图形学与数字几何处理方面的研究,主要是网格生成、映射计算及其在VR中的应用。在各向异性网格生成、几何映射计算、VR实际行走等方面取得了一定的成果,相关论文均发表在计算机图形学领域的重要国际期刊和会议上,包括SIGGRAPH、SIGGRAPH Asia、TVCG等。

  • 个人主页:staff.ustc.edu.cn/~fuxm



  • 论文题目:Predictive and Generative Neural Networks for Object Functionality

  • 论文作者:Ruizhen Hu, Zihao Yan, Jingwen Zhang, Oliver van Kaick, Ariel Shamir, Hao Zhang, Hui Huang

  • 论文摘要:Humans can predict the functionality of an object even without any surroundings, since their knowledge and experience would allow them to “hallucinate” the interaction or usage scenarios involving the object. We develop predictive and generative deep convolutional neural networks to replicate this feat. Speciically, our work focuses on functionalities of man-made 3D objects characterized by human-object or object-object interactions. Our networks are trained on a database of scene contexts, called interaction contexts, each consisting of a central object and one or more surrounding objects, that represent object functionalities. Given a 3D object in isolation, our functional similarity network (fSIM-NET), a variation of the triplet network, is trained to predict the functionality of the object by inferring functionality-revealing interaction contexts involving the object. fSIM-NET is complemented by a generative network (iGEN-NET) and a segmentation network (iSEG-NET). iGEN-NET takes a single voxelized 3D object and synthesizes a voxelized surround, i.e., the interaction context which visually demonstrates the object’s functionalities. iSEG-NET separates the interacting objects into diferent groups according to their interaction types.

  • 报告人:胡瑞珍,深圳大学

  • 报告人邮箱:ruizhen DOT hu AT gmail DOT com

  • 报告人简介:胡瑞珍,女,博士,深圳大学计算机与软件学院助理教授,中科协"青年人才托举工程"(2017-2019)入选者,深圳市海外高层次孔雀人才,深圳市南山区领航人才。2015年6月毕业于浙江大学数学系,取得理学博士学位,并获浙江省优秀毕业研究生称号。攻读博士学位期间,获国家留学基金委资助访问加拿大西蒙弗雷泽大学两年。研究方向为计算机图形学,特别是高层次形状分析、几何处理和模型制造。近些年的主要学术成果均发表在本领域国际顶级会议和期刊,研究课题连贯性强,已初步形成个人研究特色。截止目前,共发表16篇高水平论文,其中9篇发表在计算机图形学顶级会议/期刊ACM SIGGRAPH/ SIGGRAPH ASIA/TOG,3篇发表在计算机图形学国际权威期刊Computer Graphics Forum。担任The Visual Computer编委,Eurographics 2018, SIGGRAPH Asia Techinical Brief & Poster 2017, CAD/Graphics 2017, CVM 2017, ICVRV 2017, SIGGRAPH Asia Workshop 2016等程序委员会成员。

  • 个人主页:csse.szu.edu.cn/staff/ruizhenhu



  • 论文题目:Deep Exemplar-based Colorization

  • 论文作者:Mingming He, Dongdong Chen, Jing Liao, Pedro V. Sander, Lu Yuan

  • 论文摘要:We propose the first deep learning approach for exemplar-based colorization. Our network directly maps a gray scale image, together with an aligned reference color image to an output colorization. Unlike traditional exemplar-based methods to transfer color by optimizing hand-defined energies, our network learns how to select and propagate reference colors from large-scale data, which makes it robust to reference images that are similar or even irrelevant to the input image. Moreover, rather than predicting a single colorization as in other learning-based colorization methods, our network enables the user to obtain desirable results by simply feeding different references. To guide user towards efficient reference selection, the system also recommends top references with our image retrieval algorithm considering both semantic and luminance information. We validate our approach with a user study and quantitatively compare against state of the art, where we show significant improvements. Furthermore, we show our approach can be successfully extended to multi-reference and video colorization.

  • 报告人:廖菁,微软亚洲研究院

  • 报告人邮箱:jliao AT microsoft DOT com

  • 报告人简介:微软亚洲研究院视觉计算(visual computing)组研究员。博士毕业于浙江大学和香港科技大学。研究兴趣包括图像/视频处理,计算摄影学,非真实感渲染,计算机动画等计算机图形学和视觉的相关研究方向。

  • 个人主页:liaojing.github.io/html



  • 论文题目:Realtime Coupled Fluid/Rigid Control using Neural-Networks

  • 论文作者:Pingchuan Ma, Yunsheng Tian, Zherong Pan, Bo Ren, Dinesh Manocha

  • 论文摘要:We present a learning-based method to control a coupled system involving both fluid and rigid bodies. Our approach influences fluid/rigid simulator’s behavior purely at the simulation domain boundaries, leaving the rest of the domain to be governed exactly by physical laws. Compared with controllers using virtual artificial forces, our generated animations achieve higher physi- cal accuracy and visual plausibility. To solve the challenging control problem, we represent our controller using a general neural-net which is trained using deep reinforcement learning. This breaks the control task into two stages: an computationally costly training stage, and an efficient generating stage. After training, the controlled fluid animations are generated in realtime on a desktop machines by evaluating the neural net. We utilize many fluid prop- erties, e.g. the liquid’s velocity field or the smoke’s density field, to enhance the controller’s performance. We have evaluated our method on a set of complex benchmarks, where our controller drives a fluid jet to move on the domain boundary and shoot fluids towards a rigid body to accomplish a set of challenging tasks such as keeping a rigid body balanced, a two-player pingpong game, and driving a rigid body to hit a specified point on the wall.

  • 报告人:任博,南开大学

  • 报告人邮箱:rb AT nankai DOT edu DOT cn

  • 报告人简介:任博于2015年于清华大学计算机科学与技术系获得工学博士学位。2015年7月至今于南开大学计算机科学与信息安全系担任讲师职位。主要研究领域与兴趣为计算机图形学中的真实感模拟、渲染方向,以及三维模型处理方向。 近年来在图形学领域国际顶级会议SIGGRAPH,顶级杂志Transactions on Graphics(TOG)等处发表文章多篇,其中在基于物理的流体模拟、渲染方向的研究获得了国际上的广泛引用与认可。目前开展的研究项目涉及三维流体模拟,真实感渲染,三维重建与几何模型处理等。



  • 论文题目:Full 3D Reconstruction of Transparent Objects

  • 论文作者:Bojian Wu, Yang Zhou, Yiming Qian, Minglun Gong, Hui Huang

  • 论文摘要:Numerous techniques have been proposed for reconstructing 3D models for opaque objects in past decades. However, none of them can be directly applied to transparent objects. This paper presents a fully automatic approach for reconstructing complete 3D shapes of transparent objects. Through positioning an object on a turntable, its silhouettes and light refraction paths under different viewing directions are captured. Then, starting from an initial rough model generated from space carving, our algorithm progressively optimizes the model under three constraints: surface and refraction normal consistency, surface projection and silhouette consistency, and surface smoothness. Experimental results on both synthetic and real objects demonstrate that our method can successfully recover the complex shapes of transparent objects and faithfully reproduce their light refraction properties.

  • 报告人:吴博剑,中科院深圳先进技术研究院/深圳大学

  • 报告人邮箱:ustcbjwu AT gmail DOT com

  • 报告人简介:吴博剑,中国科学院在读博士,主要研究方向是三维形状分析,基于图片的三维重建等,指导老师是黄惠教授。



  • 论文题目:Object-aware Guidance for Autonomous Scene Reconstruction

  • 论文作者:Ligang Liu, Xi Xia, Han Sun, Qi Shen, Juzhan Xu, Bin Chen, Hui Huang, Kai Xu

  • 论文摘要:Autonomous 3D scene scanning and reconstruction of unknown indoor scenes by mobile robots with depth sensors has become an active research area in recent years. However, it suffers the problem of balancing between global exploration of the scene and local scanning of the objects. In this paper, we propose an object-aware guidance autoscanning approach for on-the-fly exploration, reconstruction, and understanding of unknown scenes in one navigation pass. Our approach interleaves between object analysis for identifying next best object (NBO) for global exploration, and object-aware information gain analysis for planning next best view (NBV) for local scanning. Based on a model-driven objectness measurement, an objectness based segmentation method is introduced to extract semantic object proposals in the current scene surface via a multi-class graph cuts minimization. Then we propose objectness based NBO and NBV strategies to plan both global navigation path and local scanning views. An object of interest (BOI) is identified by the NBO metric determined by both its objectness score and visual saliency. The robot then moves and visit the BOI and conducts the scanning with views provided by the NBV strategy. When the BOI is recognized as a complete object, the most similar 3D model in the dataset is inserted into the scene to replace it. The algorithm iterates until all objects are recognized and reconstructed in the scene. A variety of experiments and comparisons have shown the feasibility and efficiency of our proposed approach.

  • 报告人:夏熙,中国科学技术大学

  • 报告人邮箱:againxx AT mail DOT ustc DOT edu DOT cn

  • 报告人简介:夏熙,中国科学技术大学数学科学学院硕士研究生。2011年进入中国科学技术大学数学院学习,于2015年获得学士学位,并与2015年开始攻读硕士学位,指导导师刘利刚教授。研究兴趣围绕三维重建,机器人自动扫描、重建和场景分析。



  • 论文题目:Creating and Chaining Camera Moves for Quadrotor Videography

  • 论文作者:Ke Xie, Hao Yang, Shengqiu Huang, Dani Lischinski, Marc Christie, Kai Xu, Minglun Gong, Daniel Cohen-Or, Hui Huang

  • 论文摘要:Capturing aerial videos with a quadrotor-mounted camera is a challenging creative task, as it requires the simultaneous control of the quadrotor’s position and the mounted camera’s orientation. Letting the drone follow a pre-planned trajectory is a much more appealing option, and recent research has proposed a number of tools designed to automate the generation of feasible camera motion plans; however, these tools require the user to specify and edit the camera path, for example by providing a complete and ordered sequence of key viewpoints.
    In this paper, we propose a higher level tool designed to enable even novice users to easily capture compelling aerial videos of large scale outdoor scenes. Using a coarse 2.5D model of a scene, the user is only expected to specify starting and ending viewpoints and designate a set of landmarks, with or without a particular order. Our system automatically generates a diverse set of candidate local camera moves for observing each landmark, which are collision-free, smooth, and adapted to the shape of the landmark. These moves are guided by a landmark-centric view quality field, which combines visual interest and frame composition. An optimal global camera trajectory is then constructed that chains together a sequence of local camera moves, by choosing one move for each landmark and connecting them with suitable transition trajectories. This task is formulated and solved as an instance of the Set Traveling Salesman Problem.

  • 报告人:谢科,深圳大学

  • 报告人邮箱:ke DOT xie AT szu DOT edu DOT cn

  • 报告人简介:谢科,博士毕业于中国科学院大学,导师黄惠&陈宝权;现就职于深圳大学计算机与软件学院,主要研究方向包括基于点云的建模和场景理解,大规模场景无人机航拍路径生成等等。



  • 论文题目:DSCarver: Decompose-and-Spiral-Carve for Subtractive Manufacturing

  • 论文作者:Haisen Zhao, Hao (Richard) Zhang, Shiqing Xin, Yuanmin Deng, Changhe Tu, Wenping Wang, Daniel Cohen-Or, Baoquan Chen

  • 论文摘要:We present an automatic algorithm for subtractive manufacturing of freeform 3D objects using high-speed CNC machining. A CNC machine operates a cylindrical drill to carve off material from a 3D shape stock, following a tool path, to ``expose'' the target object. Our method decomposes the input object's surface into a small number of patches each of which is fully accessible and machinable by the CNC machine, in continuous fashion, under a fixed drill-object setup configuration. This is achieved by covering the input surface using a minimum number of accessible regions and then extracting a set of machinable patches from each accessible region. For each patch obtained, we compute a continuous, space-filling, and iso-scallop tool path which conforms to the patch boundary, enabling efficient carving with high-quality surface finishing. The tool path is generated in the form of connected Fermat spirals, which have been generalized from a 2D fill pattern for layered manufacturing to work for curved surfaces. Furthermore, we develop a novel method to control the spacing of Fermat spirals based on directional surface curvature and adapt the heat method to obtain iso-scallop carving. We demonstrate automatic generation of accessible and machinable surface decompositions and iso-scallop Fermat spiral carving paths for freeform 3D objects. Comparisons are made to commercially available tool paths in terms of real CNC machining time and surface quality.

  • 报告人:赵海森,山东大学

  • 报告人邮箱:haisenzhao AT gmail DOT com

  • 报告人简介:山东大学计交叉研究中心博士生,师从陈宝权教授。主要研究方向为智能制造相关的计算机图形学,多篇文章发表于SIGGRAPH和 Transaction on Graphics上,在软件学报和 Pacific Vis发表论文各一篇。曾荣获“山东大学校长奖学金”,“CAD&CG 2012优秀学生论文”等荣誉。

  • 个人主页:cs.sdu.edu.cn/irc/~zhaohaisen



  • 论文题目:Anderson Acceleration for Geometry Optimization and Physics Simulation

  • 论文作者:Yue Peng, Bailin Deng, Juyong Zhang, Fanyu Geng, Wenjie Qin, Ligang Liu

  • 论文摘要:Many computer graphics problems require computing geometric shapes subject to certain constraints. This often results in non-linear and non-convex optimization problems with globally coupled variables, which pose great challenge for interactive applications. Local-global solvers developed in recent years can quickly compute an approximate solution to such problems, making them an attractive choice for applications that prioritize efficiency over accuracy. However, these solvers suffer from lower convergence rate, and may take a long time to compute an accurate result. In this paper, we propose a simple and effective technique to accelerate the convergence of such solvers. By treating each local-global step as a fixed-point iteration, we apply Anderson acceleration, a well-established technique for fixed-point solvers, to speed up the convergence of a local-global solver. To address the stability issue of classical Anderson acceleration, we propose a simple strategy to guarantee the decrease of target energy and ensure its global convergence. In addition, we analyze the connection between Anderson acceleration and quasi-Newton methods, and show that the canonical choice of its mixing parameter is suitable for accelerating local-global solvers. Moreover, our technique is effective beyond classical local-global solvers, and can be applied to iterative methods with a common structure. We evaluate the performance of our technique on a variety of geometry optimization and physics simulation problems. Our approach significantly reduces the number of iterations required to compute an accurate result, with only a slight increase of computational cost per iteration. Its simplicity and effectiveness makes it a promising tool for accelerating existing algorithms as well as designing efficient new algorithms.

  • 报告人:张举勇,中国科学技术大学

  • 报告人邮箱:juyong AT ustc DOT edu DOT cn

  • 报告人简介:张举勇,中国科学技术大学副教授。2006 年于中科大计算机系获得学士学位,2011 年于新加坡南洋理工大学计算机工程学院获得博士学位,2011 年至2012 年于瑞士洛桑联邦理工学院从事博士后研究,2012 年至今工作于中国科学技术大学数学科学学院。研究兴趣包括计算机图形学、计算机视觉、最优化算法等。现担任The Visual Computer期刊编委。

  • 个人主页:staff.ustc.edu.cn/~juyong



  • 论文题目:Non-Stationary Texture Synthesis by Adversarial Expansion

  • 论文作者:Yang Zhou, Zhu Zhen, Xiang Bai, Dani Lischinski, Daniel Cohen-Or, Hui Huang

  • 论文摘要:The real world exhibits an abundance of non-stationary textures. Examples include textures with large scale structures, as well as spatially variant and inhomogeneous textures. While existing example-based texture synthesis methods can cope well with stationary textures, non-stationary textures still pose a considerable challenge, which remains unresolved. In this paper, we propose a new approach for example-based non-stationary texture synthesis. Our approach uses a generative adversarial network (GAN), trained to double the spatial extent of texture blocks extracted from a specifc texture exemplar. Once trained, the fully convolutional generator is able to expand the size of the entire exemplar, as well as of any of its sub-blocks. We demonstrate that this conceptually simple approach is highly effective for capturing large scale structures, as well as other non-stationary attributes of the input exemplar. As a result, it can cope with challenging textures, which, to our knowledge, no other existing method can handle.

  • 论文主页:vcc.szu.edu.cn/research/2018/TexSyn

  • 报告人:周漾,华中科技大学

  • 报告人邮箱:zhouyangvcc AT gmail DOT com

  • 报告人简介:周漾,男,博士。2007年与2013年于武汉大学分别获得工学学士与工学博士学位,专业摄影测量与遥感专业。2014年至2016年,在中科院深圳先进技术研究院进行博士后研究。随后在深圳大疆创新科技有限公司和深圳大学短暂工作。2017年11月加入华中科技大学电信学院,任讲师职位。研究领域涉及数字摄影测量、计算机图形学与计算机视觉。在SIGGRAPH、SIGGRAPH ASIA、Eurographics、CVPR等发论文多篇。2012年作为主要参与人获得了国家测绘科技进步奖一等奖。2014年3月获得美国摄影测量与遥感协会(ASPRS)约翰戴维森主席奖一等奖,以及波音图像分析与解译最佳科学论文奖。

  • 个人主页:mclab.eic.hust.edu.cn/~zhouyang



  • 论文题目:Neural Best-Buddies: Sparse Cross-Domain Correspondence

  • 论文作者:Kfir Aberman, Jing Liao, Mingyi Shi, Dani Lischinski, Daniel Cohen-Or, Baoquan Chen

  • 论文摘要:Correspondence between images is a fundamental problem in computer vision, with a variety of graphical applications. In this talk we will present a new method that demonstrates the abilities of deep features of classification network to precisely localize corresponding points between two images. Our method is designed for pairs of images where the main objects of interest may belong to different semantic categories and differ drastically in shape and appearance, yet still contain semantically related or geometrically similar parts.The usefulness of our method is demonstrated using a variety of graphics applications, including cross-domain image alignment, creation of hybrid images, automatic image morphing, and more.

  • 报告人:Kfir Aberman, 北京电影学院未来影像高精尖创新中心

  • 报告人邮箱:kfirab DOT t2 AT gmail DOT com

  • 报告人简介:Kfir is an Israeli researcher in the advanced innovation center for future visual entertainment (AICFVE) located at the Beijing Film Academy. His areas of interests include deep neural network architectures and their applications in computer graphics. Kfir has experience of several years in computer vision, analyzation of visual data and visual effects as an algorithm team leader in the Israeli defense Intelligence (IDI). Kfir holds a B.Sc. (summa cum laude) and M.Sc. (cum laude) in electrical engineering from the Technion and is pursuing his PhD in Tel-Aviv University.

  • 个人主页:kfiraberman.github.io