人工智能基础
本课程将介绍人工智能的基本原理、方法及应用。具体包括仅对周围环境感知并做出响应的智能agent,多种搜索方法,知识表示及推理方法,高级求解技术,机器学习方法,以及人工智能的新领域的研究进展。
This course introduces fundamental principles, methods and applications of Artificial Intelligence. The content includes intelligent agents that perceive and respond to the environments, various search algorithms, knowledge representation and advanced inference methods, machine learning methods and new advances in Artificial Intelligence.
课程内容
Solving Problems by Searching, Informed Search, Constraint Satisfaction Problems (CSP), Game Planning
Logical Agents, FOL and Inference in FOL, Planning and Knowledge Representation
Uncertainty and Bayesian Networks, Decision Making (MDPs, POMDPs, and Stochastic Games)
Machine Learning, Deep Learning, Reinforcement Learning
教材:
Stuart Russell, Peter Norvig, Artificial Intelligence: A Modern Approach. Pearson Education.
人工智能:一种现代方法. (中译本:清华大学出版社,2013年第三版)
参考书:
Nils J. Nilsson, Artificial Intelligence: A New Synthesis. Morgan Kaufmann Publishers. (中译本:人工智能,机械工业出版社,2000年);
蔡自兴等, 人工智能原理及其应用, 清华大学出版社.
Week | Date | Lecture Topic | Slides | Reference |
---|---|---|---|---|
1 | 2月24日 | 人工智能基础 | 人工智能基础 | |
2 | 3月2日 | Intelligent Agents | Intelligent Agents | |
2 | 3月5日 | Solving Problems by Searching | Solving Problems by Searching | |
3 | 3月10日 | Informed Search | Informed Search | |
4 | 3月12日 | CSP | CSP | SAT |
5 | 3月19日 | Game Playing | Game Playing | |
6 | 3月26日 | MCTS | MCTS | pl_fol |
6 | 4月1日 | Logical Agents | Logical Agents | |
7 | 4月9日 | First-Order Logic and Inference in FOL | First-Order Logic and Inference in FOL | Semantic Web kr2 kg |
8 | 4月14日 | AI Planning | AI Planning | |
8 | 4月16日 | Uncertainty and Bayesian Networks | Uncertainty and Bayesian Networks | pr bnet |