59. W. Yu, W. Shang, Z. Zhao, Y. Ma, P. Tan*, 2022 Elucidating the performance variations and critical issues of Zn electrodes in different types of aqueous electrolytes for Zn-based rechargeable batteries, Electrochimica Acta, 425 140702.(IF: 6.901)
58. W. Shang, H. Wang, W. Yu, Y. He, Y. Ma, R. Li, Z. Wu*, P. Tan*, 2022, A zinc-air battery capable of working in anaerobic conditions and fast environmental energy harvesting, Cell Reports Physical Science, 3, 100904.
57. Z. Zhang, X. Xiao, W. Yu, Z. Zhao, P. Tan*, 2022, Modeling of a non-aqueous Li-O2 battery incorporating synergistic reaction mechanisms, microstructure, and species transport in the porous electrode, Electrochimica Acta, 140510. (IF: 6.901)
56. Y. Cui, Y. He, W. Yu, W. Shang, Y. Ma, P. Tan*, 2022, In-situ observation of the Zn electrodeposition on the planar electrode in the alkaline electrolytes with different viscosities, Electrochimica Acta, 418, 140344. (IF: 6.901)
55. Y. He, Y. Cui, W. Shang, Z. Zhao, P. Tan*, 2022, Insight into potential oscillation behaviors during Zn electrodeposition: Mechanism and Inspiration for rechargeable Zn batteries, Chemical Engineering Journal, 438, 135541.(IF: 13.273)
54. Y. Liu, P. Tan*, 2022, Numerical investigation on heat transfer characterization of liquid lithium metal in pipe, Journal of University of Science and Technology of China, 52, 7. (IF: 0.53)
53. W. Shang, W. Yu, X. Xiao, Y. Ma, Y. He, Z. Zhao, P, Tan*, 2022, Self-Activated Formation of Hierarchical Co3O4 Nanoflakes with High Valence-State Conversion Capability for Ultrahigh-Capacity Zn–Co Batteries. Small, 2107149. (IF: 13.280)
52. W. Shang, W. Yu, X. Xiao, Y. Ma, Y. He, P, Tan*, 2022, Free-Standing Electrode of Core–Shell-Structured NiO@ Co3S4 for High-Performance Hybrid Zn–Co/Air Batteries, Energy & Fuels, 36, 1121-1128. (IF: 3.605)
51. Z. Zhao, W. Yu, W. Shang, Y. He, Y. Ma, Z. Zhang, P. Tan*, 2022, Revealing the effects of conductive carbon materials on the cycling stability of rechargeable Zn-air batteries, International Journal of Energy Research, 46, 7694–7703. (IF: 5.164)
50. W. Yu, W. Shang, Y. He, Z. Zhao, Y. Ma, P. Tan*, 2022, Unraveling the mechanism of non-uniform zinc deposition in rechargeable zinc-based batteries with vertical orientation, Chemical Engineering Journal, 431, 134032. (IF: 13.273)
49. W. Shang, W. Yu, X. Xiao, Y. Ma, Z. Chen, M. Ni, P. Tan*, 2022, Optimizing the charging protocol to address the self-discharge issues in rechargeable alkaline Zn-Co batteries, Applied Energy, 308, 118366. (IF: 9.746)
48. W. Yu, Y. Liu, L. Liu, X. Yang, Y. Han, P. Tan*, 2022, Rechargeable aqueous Zn-LiMn2O4 hybrid batteries with high performance and safety for energy storage, Journal of Energy Storage, 45, 103744.(IF: 6.583)
47. Y. He, W. Shang, M. Ni, Y. Huang, H. Zhao, P. Tan*, 2022, In-Situ Observation of the Gas Evolution Process on the Air Electrode of Zn-Air Batteries during Charging, Chemical Engineering Journal, 427, 130862. (IF: 13.273)
46. W. Shang, W. Yu, Y. Ma, P. Tan*, 2021, Development of the Ag nanoparticle-decorated Co3O4 electrode for high-performance hybrid Zn batteries, Journal of University of Science and Technology of China, 51, 4. (IF: 0.53)
45. X. Xiao, Z. Zhang, W. Yu, W. Shang, Y. Ma, X. Zhu*, and P. Tan*, 2021, Ultrafine Co-Doped NiO Nanoparticles Decorated on Carbon Nanotubes Improving the Electrochemical Performance and Cycling Stability of Li−CO2 Batteries, ACS Applied Energy Materials, 2021, 4, 10, 11858–11866. (IF: 6.024)
44. W. Shang, W. Yu, Y. Ma, Y. He, Z. Zhao, M. Ni, H. Zhao, P. Tan*, 2021, Constructing the Triple‐Phase Boundaries of Integrated Air Electrodes for High‐Performance Zn–Air Batteries, Advanced Materials Interfaces, 2101256. (IF: 6.147)
43. Z. Zhao, W. Yu, Y. He, W. Shang, Y. Ma, H. Zhao, P. Tan*, 2021, Revealing the Effects of Structure Design and Operating Protocols on the Electrochemical Performance of Rechargeable Zn-Air Batteries, Journal of The Electrochemical Society, 168, 100510. (IF: 4.316)
42. Z. Chen, Y. Liu, W. Yu, Q. He, M. Ni, S. Yang, S. Zhang, P. Tan*, 2021, Cost evaluation and sensitivity analysis of the alkaline zinc-iron flow battery system for large-scale energy storage applications, Journal of Energy Storage, 44, 103327. (IF: 6.583)
41. Y. Ma, W. Shang, W. Yu, X. Chen, W. Xia, C. Wang, P. Tan*, 2021, Synthesis of Ultrasmall NiCo2O4 Nanoparticle-Decorated N-Doped Graphene Nanosheets as an Effective Catalyst for Zn–Air Batteries, Energy & Fuels. 35, 14188−14196. (IF: 3.605)
40. W. Yu, W. Shang, X. Xiao, Y. Ma, Z. Chen, B. Chen, H. Xu, M. Ni, P. Tan*, 2021, Elucidating the mechanism of discharge performance improvement in zinc-air flow batteries: A combination of experimental and modeling investigations, Journal of Energy Storage, 40, 102779. (IF: 6.583)
39. Y. Ma, W. Yu, W. Shang, X. Xiao, Y. Dai, C. Cheng, M. Ni, P. Tan*, 2021, Investigation on the electrochemical performance of hybrid zinc batteries through numerical analysis, Electrochimica Acta, 375, 137967. (IF: 6.901)
38. W. Shang, W. Yu, X. Xiao, Y. Ma, P. Tan*, M. Ni, 2021, Unravel the influences of Ni substitution on Co-based electrodes for rechargeable alkaline Zn-Co batteries, Journal of Power Sources, 483, 229192. (IF: 9.127)
37. Z. Chen, W. Yu, Y. Liu, Y. Zeng, Q. He, P. Tan*, M. Ni, 2021, Mathematical modeling and numerical analysis of alkaline zinc-iron flow batteries for energy storage applications, Chemical Engineering Journal, 405, 126684. (IF: 13.273)
36. X. Xiao, W. Yu, W. Shang, P. Tan*, Y. Dai, C. Cheng, M. Ni, 2020, Investigation on the Strategies for Discharge Capacity Improvement of Aprotic Li-CO2 Batteries, Energy & Fuels. 34, 16870−16878. (IF: 3.605)
35. X Xiao, P. Tan*, X. Zhu, Y. Dai, C. Cheng, M. Ni, 2020, Investigation on the discharge and charge behaviors of Li-CO2 batteries with carbon nanotube electrodes, ACS Sustain. Chem. Eng, 8, 9742–9750. (IF: 8.198)
34. W. Shang, W. Yu, Y. Liu, R. Li, Y. Dai, C. Cheng, P. Tan*, M. Ni, 2020, Rechargeable alkaline zinc batteries: Progress and challenges, Energy Storage Mater, 31, 44–57. (IF: 17.789)
33. W. Shang, W. Yu, X. Xiao, Y. Ma, C. Cheng, Y. Dai, P. Tan*, M. Ni, 2020, Microstructure-tuned cobalt oxide electrodes for high-performance Zn-Co batteries, Electrochimica Acta, 353, 136535.(IF: 6.901)
32. P. Tan*, X. Xiao, Y. Dai, C. Cheng, M. Ni, 2020, Photo-assisted non-aqueous lithium-oxygen batteries: Progress and prospects, Renewable and Sustainable Energy Reviews, 127, 109877. (IF: 14.982)
31. Y. Ma, X. Xiao, W. Yu, W. Shang, P. Tan*, Z. Wu, M. Ni, 2020, Mathematical modeling and numerical analysis of the discharge process of an alkaline zinc-cobalt battery, Journal of Energy Storage, 30, 101432. (IF: 6.583)
30. W. Yu, W. Shang, X. Xiao, P. Tan*, B. Chen, Z. Wu, H. Xu, 2020, Achieving a stable zinc electrode with ultralong cycle life by implementing a flowing electrolyte, Journal of Power Sources, 453, 227856. (IF: 9.127)
29. X. Xiao, W. Shang, W. Yu, Y. Ma, P. Tan*, B. Chen, W. Kong, H.R. Xu, M. Ni, 2020, Toward the rational design of cathode and electrolyte materials for aprotic Li–CO2 batteries: a numerical investigation, International Journal of Energy Research, 44, 496–507. (IF: 5.164)
28. W. Yu, W. Shang, P. Tan*, B. Chen, Z. Wu, H. Xu, Z. Shao, M. Liu, M. Ni, 2019, Toward a New Generation of Low Cost, Efficient, and Durable Metal-Air FlowBatteries, Journal of Materials Chemistry A, 7, 26744–26768. (IF: 12.732)
27. W. Shang, W. Yu, P. Tan*, B. Chen, Z. Wu, H.R. Xu, M. Ni, 2019, Achieving high energy density and efficiency through integration: progress in hybrid zinc batteries, Journal of Materials Chemistry A, 7, 15564–15574. (IF: 12.732)
26. W. Shang, W. Yu, P. Tan*, B. Chen, Z. Wu, H.R. Xu, M. Ni, 2019, A high-performance Zn battery based on self-assembled nanostructured NiCo2O4 electrode, Journal of Power Sources, 421, 6–13. (IF: 9.127)
25. P. Tan, B. Chen, H.R. Xu, W.Z. Cai, W. He, M. Ni, 2019, In-situ growth of Co3O4 nanowire-assembled clusters on nickel foam for aqueous rechargeable Zn-Co3O4 and Zn-air batteries, Applied Catalysis B: Environmental, 241, 104–112. (IF: 19.503)
24. P. Tan, B. Chen, H.R. Xu, W.Z. Cai, W. He, M. Ni, 2019, Porous Co3O4 nanoplates as the active material for rechargeable Zn-air batteries with high energy efficiency and cycling stability, Energy, 166, 1241–1248. (IF: 7.147)
23. P. Tan, Z. Wu, B. Chen, H.R. Xu, W.Z. Cai, M. Ni, 2019, Exploring oxygen electrocatalytic activity and pseudocapacitive behavior of Co3O4 nanoplates in alkaline solutions, Electrochimica Acta, 310, 86–95. (IF: 6.901)
22. P. Tan, Z. Wu, B. Chen, H.R. Xu, W.Z. Cai, S.W. Jin, Z.P. Shao, M. Ni, 2019, Cation-substitution-tuned oxygen electrocatalyst of spinel cobaltite MCo2O4 (M = Fe, Co, and Ni) hexagonal nanoplates for rechargeable Zn-air batteries, Journal of The Electrochemical Society, 166, A3448–A3455. (IF: 4.316)
21. P. Tan, B. Chen, H.R. Xu, W.Z. Cai, W. He, M. Chen, M. Ni, 2019, Synthesis of Fe2O3 Nanoparticle-Decorated N-Doped Reduced Graphene Oxide as an Effective Catalyst for Zn-Air Batteries, Journal of The Electrochemical Society, 166, A616–A622. (IF: 4.316)
20. P. Tan, B. Chen, H.R. Xu, W.Z. Cai, W. He, M. Ni, 2018, Growth of Al and Co co-doped NiO nanosheets on carbon cloth as the air electrode for Zn-air batteries with high cycling stability, Electrochimica Acta, 290, 21–29. (IF: 6.901)
19. P. Tan, B. Chen, H.R. Xu, W.Z. Cai, W. He, H.C. Zhang, M.L. Liu, Z.P. Shao, M. Ni, 2018, Integration of Zn−Ag and Zn−Air Batteries: A Hybrid Battery with the Advantages of Both, ACS Applied Material & Interfaces, 10, 36873−36881. (IF: 9.229)
18. P. Tan, B. Chen, H.R. Xu, H.C. Zhang, W.Z. Cai, M. Ni, M.L. Liu, Z.P. Shao, 2018, Nanoporous NiO/Ni(OH)2 Plates Incorporated with Carbon Nanotubes as Active Materials of Rechargeable Hybrid Zinc Batteries for Improved Energy Efficiency and High-Rate Capability, Journal of The Electrochemical Society, 165, A2119–A2126. (IF: 4.316)
17.P. Tan, B. Chen, H.R. Xu, W.Z. Cai, W. He, M.L. Liu, Z.P. Shao, M. Ni, 2018, Co3O4 Nanosheets as Active Material for Hybrid Zn Batteries, Small, 14, 1800225. (IF: 13.281)
16. P. Tan, B. Chen, H.R. Xu, W.Z. Cai, W. He, M. Ni, 2018, Investigation on the electrode design of hybrid Zn-Co3O4/air batteries for performance improvements, Electrochimica Acta, 283, 1028–1036. (IF: 6.901)
15. P. Tan, B. Chen, H.R. Xu, H.C. Zhang, W.Z. Cai, M. Ni, M.L. Liu, Z.P. Shao, 2017, Flexible Metal-Air Batteries: Recent Advances, Challenges, and Future Perspectives, Energy & Environmental Science, 10, 2056–2080. (IF: 38.532)
14. P. Tan, W. Kong, Z.P. Shao, M.L. Liu, M. Ni, 2017, Advances in modeling and simulation of Li-air batteries, Progress in Energy and Combustion Science, 62, 155–189. (IF: 29.394)
13. P. Tan, M.L. Liu, Z.P. Shao, M. Ni, 2017, Recent advances in perovskite oxides as electrode materials for non-aqueous lithium-oxygen batteries, Advanced Energy Materials, 7, 1602674. (IF: 29.368)
12. P. Tan, M. Ni, Z.P. Shao, B. Chen, W. Kong, 2017, Numerical investigation of a non-aqueous lithium-oxygen battery based on lithium superoxide as the discharge product, Applied Energy, 203, 254–266. (IF: 9.746)
11. P. Tan, H.R. Jiang, X.B. Zhu, L. An, C.Y. Jung, L. Shi, M.C. Wu, W. Shyy, T.S. Zhao, 2017, Advances and challenges in lithium-air batteries, Applied Energy, 204, 780–806. (IF: 9.746)
10. P. Tan, Z.H. Wei, W. Shyy, T.S. Zhao, X.B. Zhu, 2016, A nano-structured RuO2/NiO cathode enables the operation of non-aqueous lithium-air batteries in ambient air, Energy & Environmental Science, 9, 1783–1793. (IF: 38.532)
9. P. Tan, W. Shyy, T.S. Zhao, R.H. Zhang, X.B. Zhu, 2016, Effects of moist air on the cycling performance of non-aqueous lithium-air batteries, Applied Energy, 182, 569–575. (IF: 9.746)
8. P. Tan, W. Shyy, M.C. Wu, Y.Y. Huang, T.S. Zhao, 2016, Carbon electrode with NiO and RuO2 nanoparticles improves the cycling life of non-aqueous lithium-oxygen batteries, Journal of Power Sources, 326, 303–312. (IF: 9.127)
7. P. Tan, L. Shi, W. Shyy, T.S. Zhao, 2016, Morphology of the discharge product in non-aqueous lithium-oxygen batteries: furrowed toroid particles correspond to a higher energy efficiency, Energy Technology, 4, 393–400. (IF: 3.631)
6. P. Tan, W. Shyy, T.S. Zhao, X.B. Zhu, Z.H. Wei, 2015, A RuO2 nanoparticle-decorated buckypaper cathode for non-aqueous lithium-oxygen batteries, Journal of Materials Chemistry A, 3, 19042–19049. (IF: 12.732)
5. P. Tan, W. Shyy, T.S. Zhao, Z.H. Wei, L. An, 2015, Discharge product morphology versus operating temperature in non-aqueous lithium-air batteries, Journal of Power Sources, 278, 133–140. (IF: 9.127)
4. P. Tan, W. Shyy, T.S. Zhao, 2015, What is the ideal distribution of electrolyte inside cathode pores of non-aqueous lithium-air batteries, Science Bulletin, 60, 975–976. (IF: 11.78)
3. P. Tan, W. Shyy, Z.H. Wei, L. An, T.S. Zhao, 2014, A carbon powder-nanotube composite cathode for non-aqueous lithium-air batteries, Electrochimica Acta, 147, 1–8. (IF: 6.901)
2. P. Tan, W. Shyy, L. An, Z.H. Wei, T.S. Zhao, 2014, A gradient porous cathode for non-aqueous lithium-air batteries leading to a high capacity, Electrochemistry Communications, 46, 111–114. (IF: 4.724)
1. P. Tan, Z.H. Wei, W. Shyy, T.S. Zhao, 2013, Prediction of the theoretical capacity of non-aqueous lithium-air batteries, Applied Energy, 4, 275–282. (IF: 9.746)
……
|