59. W. Yu, W. Shang, Z. Zhao, Y. Ma, P. Tan*, 2022 Elucidating the performance variations and critical issues of Zn electrodes in different types of aqueous electrolytes for Zn-based rechargeable batteries, Electrochimica Acta, 425 140702.(IF: 6.901)
58. W. Shang, H. Wang, W. Yu, Y. He, Y. Ma, R. Li, Z. Wu*, P. Tan*, 2022, A zinc-air battery capable of working in anaerobic conditions and fast environmental energy harvesting, Cell Reports Physical Science, 3, 100904.
57. Z. Zhang, X. Xiao, W. Yu, Z. Zhao, P. Tan*, 2022, Modeling of a non-aqueous Li-O2 battery incorporating synergistic reaction mechanisms, microstructure, and species transport in the porous electrode, Electrochimica Acta, 140510. (IF: 6.901)
56. Y. Cui, Y. He, W. Yu, W. Shang, Y. Ma, P. Tan*, 2022, In-situ observation of the Zn electrodeposition on the planar electrode in the alkaline electrolytes with different viscosities, Electrochimica Acta, 418, 140344. (IF: 6.901)
55. Y. He, Y. Cui, W. Shang, Z. Zhao, P. Tan*, 2022, Insight into potential oscillation behaviors during Zn electrodeposition: Mechanism and Inspiration for rechargeable Zn batteries, Chemical Engineering Journal, 438, 135541.(IF: 13.273)
54. Y. Liu, P. Tan*, 2022, Numerical investigation on heat transfer characterization of liquid lithium metal in pipe, Journal of University of Science and Technology of China, 52, 7. (IF: 0.53)
53. W. Shang, W. Yu, X. Xiao, Y. Ma, Y. He, Z. Zhao, P, Tan*, 2022, Self-Activated Formation of Hierarchical Co3O4 Nanoflakes with High Valence-State Conversion Capability for Ultrahigh-Capacity Zn–Co Batteries. Small, 2107149. (IF: 13.280)
52. W. Shang, W. Yu, X. Xiao, Y. Ma, Y. He, P, Tan*, 2022, Free-Standing Electrode of Core–Shell-Structured NiO@ Co3S4 for High-Performance Hybrid Zn–Co/Air Batteries, Energy & Fuels, 36, 1121-1128. (IF: 3.605)
51. Z. Zhao, W. Yu, W. Shang, Y. He, Y. Ma, Z. Zhang, P. Tan*, 2022, Revealing the effects of conductive carbon materials on the cycling stability of rechargeable Zn-air batteries, International Journal of Energy Research, 46, 7694–7703. (IF: 5.164)
50. W. Yu, W. Shang, Y. He, Z. Zhao, Y. Ma, P. Tan*, 2022, Unraveling the mechanism of non-uniform zinc deposition in rechargeable zinc-based batteries with vertical orientation, Chemical Engineering Journal, 431, 134032. (IF: 13.273)
49. W. Shang, W. Yu, X. Xiao, Y. Ma, Z. Chen, M. Ni, P. Tan*, 2022, Optimizing the charging protocol to address the self-discharge issues in rechargeable alkaline Zn-Co batteries, Applied Energy, 308, 118366. (IF: 9.746)
48. W. Yu, Y. Liu, L. Liu, X. Yang, Y. Han, P. Tan*, 2022, Rechargeable aqueous Zn-LiMn2O4 hybrid batteries with high performance and safety for energy storage, Journal of Energy Storage, 45, 103744.(IF: 6.583)
47. Y. He, W. Shang, M. Ni, Y. Huang, H. Zhao, P. Tan*, 2022, In-Situ Observation of the Gas Evolution Process on the Air Electrode of Zn-Air Batteries during Charging, Chemical Engineering Journal, 427, 130862. (IF: 13.273)
46. W. Shang, W. Yu, Y. Ma, P. Tan*, 2021, Development of the Ag nanoparticle-decorated Co3O4 electrode for high-performance hybrid Zn batteries, Journal of University of Science and Technology of China, 51, 4. (IF: 0.53)
45. X. Xiao, Z. Zhang, W. Yu, W. Shang, Y. Ma, X. Zhu*, and P. Tan*, 2021, Ultrafine Co-Doped NiO Nanoparticles Decorated on Carbon Nanotubes Improving the Electrochemical Performance and Cycling Stability of Li−CO2 Batteries, ACS Applied Energy Materials, 2021, 4, 10, 11858–11866. (IF: 6.024)
44. W. Shang, W. Yu, Y. Ma, Y. He, Z. Zhao, M. Ni, H. Zhao, P. Tan*, 2021, Constructing the Triple‐Phase Boundaries of Integrated Air Electrodes for High‐Performance Zn–Air Batteries, Advanced Materials Interfaces, 2101256. (IF: 6.147)
43. Z. Zhao, W. Yu, Y. He, W. Shang, Y. Ma, H. Zhao, P. Tan*, 2021, Revealing the Effects of Structure Design and Operating Protocols on the Electrochemical Performance of Rechargeable Zn-Air Batteries, Journal of The Electrochemical Society, 168, 100510. (IF: 4.316)
42. Z. Chen, Y. Liu, W. Yu, Q. He, M. Ni, S. Yang, S. Zhang, P. Tan*, 2021, Cost evaluation and sensitivity analysis of the alkaline zinc-iron flow battery system for large-scale energy storage applications, Journal of Energy Storage, 44, 103327. (IF: 6.583)
41. Y. Ma, W. Shang, W. Yu, X. Chen, W. Xia, C. Wang, P. Tan*, 2021, Synthesis of Ultrasmall NiCo2O4 Nanoparticle-Decorated N-Doped Graphene Nanosheets as an Effective Catalyst for Zn–Air Batteries, Energy & Fuels. 35, 14188−14196. (IF: 3.605)
40. W. Yu, W. Shang, X. Xiao, Y. Ma, Z. Chen, B. Chen, H. Xu, M. Ni, P. Tan*, 2021, Elucidating the mechanism of discharge performance improvement in zinc-air flow batteries: A combination of experimental and modeling investigations, Journal of Energy Storage, 40, 102779. (IF: 6.583)
39. Y. Ma, W. Yu, W. Shang, X. Xiao, Y. Dai, C. Cheng, M. Ni, P. Tan*, 2021, Investigation on the electrochemical performance of hybrid zinc batteries through numerical analysis, Electrochimica Acta, 375, 137967. (IF: 6.901)
38. W. Shang, W. Yu, X. Xiao, Y. Ma, P. Tan*, M. Ni, 2021, Unravel the influences of Ni substitution on Co-based electrodes for rechargeable alkaline Zn-Co batteries, Journal of Power Sources, 483, 229192. (IF: 9.127)
37. Z. Chen, W. Yu, Y. Liu, Y. Zeng, Q. He, P. Tan*, M. Ni, 2021, Mathematical modeling and numerical analysis of alkaline zinc-iron flow batteries for energy storage applications, Chemical Engineering Journal, 405, 126684. (IF: 13.273)
36. X. Xiao, W. Yu, W. Shang, P. Tan*, Y. Dai, C. Cheng, M. Ni, 2020, Investigation on the Strategies for Discharge Capacity Improvement of Aprotic Li-CO2 Batteries, Energy & Fuels. 34, 16870−16878. (IF: 3.605)
35. X Xiao, P. Tan*, X. Zhu, Y. Dai, C. Cheng, M. Ni, 2020, Investigation on the discharge and charge behaviors of Li-CO2 batteries with carbon nanotube electrodes, ACS Sustain. Chem. Eng, 8, 9742–9750. (IF: 8.198)
34. W. Shang, W. Yu, Y. Liu, R. Li, Y. Dai, C. Cheng, P. Tan*, M. Ni, 2020, Rechargeable alkaline zinc batteries: Progress and challenges, Energy Storage Mater, 31, 44–57. (IF: 17.789)
33. W. Shang, W. Yu, X. Xiao, Y. Ma, C. Cheng, Y. Dai, P. Tan*, M. Ni, 2020, Microstructure-tuned cobalt oxide electrodes for high-performance Zn-Co batteries, Electrochimica Acta, 353, 136535.(IF: 6.901)
32. P. Tan*, X. Xiao, Y. Dai, C. Cheng, M. Ni, 2020, Photo-assisted non-aqueous lithium-oxygen batteries: Progress and prospects, Renewable and Sustainable Energy Reviews, 127, 109877. (IF: 14.982)
31. Y. Ma, X. Xiao, W. Yu, W. Shang, P. Tan*, Z. Wu, M. Ni, 2020, Mathematical modeling and numerical analysis of the discharge process of an alkaline zinc-cobalt battery, Journal of Energy Storage, 30, 101432. (IF: 6.583)
30. W. Yu, W. Shang, X. Xiao, P. Tan*, B. Chen, Z. Wu, H. Xu, 2020, Achieving a stable zinc electrode with ultralong cycle life by implementing a flowing electrolyte, Journal of Power Sources, 453, 227856. (IF: 9.127)
29. X. Xiao, W. Shang, W. Yu, Y. Ma, P. Tan*, B. Chen, W. Kong, H.R. Xu, M. Ni, 2020, Toward the rational design of cathode and electrolyte materials for aprotic Li–CO2 batteries: a numerical investigation, International Journal of Energy Research, 44, 496–507. (IF: 5.164)
28. W. Yu, W. Shang, P. Tan*, B. Chen, Z. Wu, H. Xu, Z. Shao, M. Liu, M. Ni, 2019, Toward a New Generation of Low Cost, Efficient, and Durable Metal-Air FlowBatteries, Journal of Materials Chemistry A, 7, 26744–26768. (IF: 12.732)
27. W. Shang, W. Yu, P. Tan*, B. Chen, Z. Wu, H.R. Xu, M. Ni, 2019, Achieving high energy density and efficiency through integration: progress in hybrid zinc batteries, Journal of Materials Chemistry A, 7, 15564–15574. (IF: 12.732)
26. W. Shang, W. Yu, P. Tan*, B. Chen, Z. Wu, H.R. Xu, M. Ni, 2019, A high-performance Zn battery based on self-assembled nanostructured NiCo2O4 electrode, Journal of Power Sources, 421, 6–13. (IF: 9.127)
25. P. Tan, B. Chen, H.R. Xu, W.Z. Cai, W. He, M. Ni, 2019, In-situ growth of Co3O4 nanowire-assembled clusters on nickel foam for aqueous rechargeable Zn-Co3O4 and Zn-air batteries, Applied Catalysis B: Environmental, 241, 104–112. (IF: 19.503)
24. P. Tan, B. Chen, H.R. Xu, W.Z. Cai, W. He, M. Ni, 2019, Porous Co3O4 nanoplates as the active material for rechargeable Zn-air batteries with high energy efficiency and cycling stability, Energy, 166, 1241–1248. (IF: 7.147)
23. P. Tan, Z. Wu, B. Chen, H.R. Xu, W.Z. Cai, M. Ni, 2019, Exploring oxygen electrocatalytic activity and pseudocapacitive behavior of Co3O4 nanoplates in alkaline solutions, Electrochimica Acta, 310, 86–95. (IF: 6.901)
22. P. Tan, Z. Wu, B. Chen, H.R. Xu, W.Z. Cai, S.W. Jin, Z.P. Shao, M. Ni, 2019, Cation-substitution-tuned oxygen electrocatalyst of spinel cobaltite MCo2O4 (M = Fe, Co, and Ni) hexagonal nanoplates for rechargeable Zn-air batteries, Journal of The Electrochemical Society, 166, A3448–A3455. (IF: 4.316)
21. P. Tan, B. Chen, H.R. Xu, W.Z. Cai, W. He, M. Chen, M. Ni, 2019, Synthesis of Fe2O3 Nanoparticle-Decorated N-Doped Reduced Graphene Oxide as an Effective Catalyst for Zn-Air Batteries, Journal of The Electrochemical Society, 166, A616–A622. (IF: 4.316)
20. P. Tan, B. Chen, H.R. Xu, W.Z. Cai, W. He, M. Ni, 2018, Growth of Al and Co co-doped NiO nanosheets on carbon cloth as the air electrode for Zn-air batteries with high cycling stability, Electrochimica Acta, 290, 21–29. (IF: 6.901)
19. P. Tan, B. Chen, H.R. Xu, W.Z. Cai, W. He, H.C. Zhang, M.L. Liu, Z.P. Shao, M. Ni, 2018, Integration of Zn−Ag and Zn−Air Batteries: A Hybrid Battery with the Advantages of Both, ACS Applied Material & Interfaces, 10, 36873−36881. (IF: 9.229)
18. P. Tan, B. Chen, H.R. Xu, H.C. Zhang, W.Z. Cai, M. Ni, M.L. Liu, Z.P. Shao, 2018, Nanoporous NiO/Ni(OH)2 Plates Incorporated with Carbon Nanotubes as Active Materials of Rechargeable Hybrid Zinc Batteries for Improved Energy Efficiency and High-Rate Capability, Journal of The Electrochemical Society, 165, A2119–A2126. (IF: 4.316)
17.P. Tan, B. Chen, H.R. Xu, W.Z. Cai, W. He, M.L. Liu, Z.P. Shao, M. Ni, 2018, Co3O4 Nanosheets as Active Material for Hybrid Zn Batteries, Small, 14, 1800225. (IF: 13.281)
16. P. Tan, B. Chen, H.R. Xu, W.Z. Cai, W. He, M. Ni, 2018, Investigation on the electrode design of hybrid Zn-Co3O4/air batteries for performance improvements, Electrochimica Acta, 283, 1028–1036. (IF: 6.901)
15. P. Tan, B. Chen, H.R. Xu, H.C. Zhang, W.Z. Cai, M. Ni, M.L. Liu, Z.P. Shao, 2017, Flexible Metal-Air Batteries: Recent Advances, Challenges, and Future Perspectives, Energy & Environmental Science, 10, 2056–2080. (IF: 38.532)
14. P. Tan, W. Kong, Z.P. Shao, M.L. Liu, M. Ni, 2017, Advances in modeling and simulation of Li-air batteries, Progress in Energy and Combustion Science, 62, 155–189. (IF: 29.394)
13. P. Tan, M.L. Liu, Z.P. Shao, M. Ni, 2017, Recent advances in perovskite oxides as electrode materials for non-aqueous lithium-oxygen batteries, Advanced Energy Materials, 7, 1602674. (IF: 29.368)
12. P. Tan, M. Ni, Z.P. Shao, B. Chen, W. Kong, 2017, Numerical investigation of a non-aqueous lithium-oxygen battery based on lithium superoxide as the discharge product, Applied Energy, 203, 254–266. (IF: 9.746)
11. P. Tan, H.R. Jiang, X.B. Zhu, L. An, C.Y. Jung, L. Shi, M.C. Wu, W. Shyy, T.S. Zhao, 2017, Advances and challenges in lithium-air batteries, Applied Energy, 204, 780–806. (IF: 9.746)
10. P. Tan, Z.H. Wei, W. Shyy, T.S. Zhao, X.B. Zhu, 2016, A nano-structured RuO2/NiO cathode enables the operation of non-aqueous lithium-air batteries in ambient air, Energy & Environmental Science, 9, 1783–1793. (IF: 38.532)
9. P. Tan, W. Shyy, T.S. Zhao, R.H. Zhang, X.B. Zhu, 2016, Effects of moist air on the cycling performance of non-aqueous lithium-air batteries, Applied Energy, 182, 569–575. (IF: 9.746)
8. P. Tan, W. Shyy, M.C. Wu, Y.Y. Huang, T.S. Zhao, 2016, Carbon electrode with NiO and RuO2 nanoparticles improves the cycling life of non-aqueous lithium-oxygen batteries, Journal of Power Sources, 326, 303–312. (IF: 9.127)
7. P. Tan, L. Shi, W. Shyy, T.S. Zhao, 2016, Morphology of the discharge product in non-aqueous lithium-oxygen batteries: furrowed toroid particles correspond to a higher energy efficiency, Energy Technology, 4, 393–400. (IF: 3.631)
6. P. Tan, W. Shyy, T.S. Zhao, X.B. Zhu, Z.H. Wei, 2015, A RuO2 nanoparticle-decorated buckypaper cathode for non-aqueous lithium-oxygen batteries, Journal of Materials Chemistry A, 3, 19042–19049. (IF: 12.732)
5. P. Tan, W. Shyy, T.S. Zhao, Z.H. Wei, L. An, 2015, Discharge product morphology versus operating temperature in non-aqueous lithium-air batteries, Journal of Power Sources, 278, 133–140. (IF: 9.127)
4. P. Tan, W. Shyy, T.S. Zhao, 2015, What is the ideal distribution of electrolyte inside cathode pores of non-aqueous lithium-air batteries, Science Bulletin, 60, 975–976. (IF: 11.78)
3. P. Tan, W. Shyy, Z.H. Wei, L. An, T.S. Zhao, 2014, A carbon powder-nanotube composite cathode for non-aqueous lithium-air batteries, Electrochimica Acta, 147, 1–8. (IF: 6.901)
2. P. Tan, W. Shyy, L. An, Z.H. Wei, T.S. Zhao, 2014, A gradient porous cathode for non-aqueous lithium-air batteries leading to a high capacity, Electrochemistry Communications, 46, 111–114. (IF: 4.724)
1. P. Tan, Z.H. Wei, W. Shyy, T.S. Zhao, 2013, Prediction of the theoretical capacity of non-aqueous lithium-air batteries, Applied Energy, 4, 275–282. (IF: 9.746)
58. Yu Wang, Xingbao Zhu, Peng Tan, Yuanguo Wu, Zining Man, Xiangyu Wen, Zhe Lu, 2022, Safe and Energy-Dense Flexible Solid-State Lithium−Oxygen Battery with a Structured Three-Dimensional Polymer Electrolyte, ACS Sustainable Chem. Eng, 2022, 10, 4894−4903.
57. Jie Yu, Yawen Dai, Zhenbao Zhang, Tong Liu, Siyuan Zhao, Chun Cheng, Peng Tan, Zongping Shao, Meng Ni, Tailoring structural properties of carbon via implanting optimal co nanoparticles in n‐rich carbon cages toward high‐efficiency oxygen electrocatalysis for rechargeable zn-air batteries, 2022, Carbon Energy, doi: 10.1002/cey2.171.
56. Yawen Dai, Jie Yu, Peng Tan, Chun Cheng, Tong Liu, Siyuan Zhao, Zongping Shao, Tianshou Zhao, Meng Ni, 2022, Microscale-decoupled charge-discharge reaction sites for an air electrode with abundant triple-phase boundary and enhanced cycle stability of Zn-Air batteries, Journal of Power Sources, 525, 231108.
55. Yawen Dai, Jie Yu, Zhenbao Zhang, Shuo Zhai, Chun Cheng, Siyuan Zhao, Peng Tan, Zongping Shao, Meng Ni, 2021, Regulating the Interfacial Electron Density of La0.8Sr0.2Mn0.5Co0.5O3/RuOx for Efficient and Low-Cost Bifunctional Oxygen Electrocatalysts and Rechargeable Zn-Air Batteries, ACS Appl. Mater. Interfaces, 13, 61098−61106.
54. Zhen Wu, Pengfei Zhu, Jing Yao, Sandra Kurko, Jianwei Ren, Peng Tan, Haoran Xu, Meng Ni, 2021, Methanol to power through high-efficiency hybrid fuel cell system: Thermodynamic, thermo-economic, and techno-economic (3T) analyses in Northwest China, Energy Conversion and Management, 232, 113899.
53. Qian Lu, Xiaohong Zou, Cui Wang, Kaiming Liao, Peng Tan, Ran Ran, Wei Zhou, Meng Ni, Zongping Shao, 2021, Tailoring Charge and Mass Transport in Cation/Anion-codoped Ni3N / N-doped CNT Integrated Electrode toward Rapid Oxygen Evolution for Fast-Charging Zinc-Air Batteries, Energy Storage Materials, 39, 11–20.
52. Haoran Xu, Jingbo Ma, Peng Tan, Zhen Wu, Yanxiang Zhang, Meng Ni, Jin Xuan, 2021, Enabling thermal-neutral electrolysis for CO2-to-fuel conversions with a hybrid deep learning strategy, Energy Conversion and Management, 230, 113827.
51. Yawen Dai, Jie Yu, Zhenbao Zhang, Chun Cheng, Peng Tan, Zongping Shao, Meng Ni, 2021, Interfacial La Diffusion in the CeO2/LaFeO3 Hybrid for Enhanced Oxygen Evolution Activity, ACS Appl. Mater. Interfaces, 13 (2), 2799-2806.
50. Chun Cheng, Sijia Wang, Peng Tan, Yawen Dai, Jie Yu, Rui Cheng, Shien-Ping, Meng Ni, 2021, Insights into the Thermopower of Thermally Regenerative Electrochemical Cycle for Low Grade Heat Harvesting, ACS Energy Letters, 6, 329-336.
49. Fenghao Lia, Yuge Wei, Peng Tan, Yikai Zeng, Yanping Yuan, 2020, Numerical investigations of effects of the interdigitated channel spacing on overall performance of vanadium redox flow batteries, Journal of Energy Storage, 32, 101781.
48. Zhen Wu, Pengfei Zhu, Jing Yao, Peng Tan, Haoran Xu, Bin Chen, Fusheng Yang, Meng Ni, 2020, Dynamic modeling and operation strategy of natural gas fueled SOFC-Engine hybrid power system with hydrogen addition by metal hydride for vehicle applications, eTransportation, 5, 100074.
47. Qian Lu, Yanan Guo, Peng Mao, Kaiming Liao, Xiaohong Zou, Jie Dai, Peng Tan, Ran Ran, Wei Zhou, Meng Ni, Zongping Shao, 2020, Rich atomic interfaces between sub-1 nm RuOx clusters and porous Co3O4 nanosheets boost oxygen electrocatalysis bifunctionality for advanced Zn-air batteries, Energy Storage Materials, 32, 20-29.
46. Yawen Dai, Jie Yu, Chun Cheng, Peng Tan, Meng Ni, 2020, Mini-review of perovskite oxides as oxygen electrocatalysts for rechargeable zinc–air batteries, Chemical Engineering Journal, 397, 125516.
45. H. Xu, J. Ma, P. Tan, B. Chen, Z. Wu, Y. Zhang, H. Wang, J. Xuan, M. Ni, 2020, Towards online optimisation of solid oxide fuel cell performance: Combining deep learning with multi-physics simulation, Energy and AI, 1, 100003.
44. Y. Dai, J. Yu, C. Cheng, P. Tan, M. Ni, 2020, Engineering the interfaces in water-splitting photoelectrodes – an overview of the technique development, Journal of Materials Chemistry A, 8, 6984-7002.
43. H. Yan, G. Wang, Z. Lu, P. Tan, T. H. Kwan, H. Xu, B. Chen, M. Ni, Z. Wu, 2020, Techno-economic evaluation and technology roadmap of the MWe-scale SOFC-PEMFC hybrid fuel cell system for clean power generation, Journal of Cleaner Production, 255, 12022.
42. Z. Wu, P. Zhu, J. Yao, P. Tan, H. Xu, B. Chen, F. Yang, Z. Zhang, M. Ni, 2020, Thermo-economic modeling and analysis of an NG-fueled SOFC-WGS-TSA-PEMFC hybrid energy conversion system for stationary electricity power generation, Energy, 192, 116613.
41. Q. Lu, J. Yu, X. Zou, K. Liao, P. Tan, W. Zhou, M. Ni, Z. Shao, 2019, Self‐Catalyzed Growth of Co, N‐Codoped CNTs on Carbon‐Encased CoSx Surface: A Noble‐Metal‐Free Bifunctional Oxygen Electrocatalyst for Flexible Solid Zn–Air Batteries, Advanced Functional Materials, 29, 1904481.
40. H.R. Xu, B. Chen, P. Tan, Y. Zhang, Q. He, Z. Wu, M. Ni, 2019, The thermal effects of all porous solid oxide fuel cells, Journal of Power Sources, 440, 227102.
39. B. Chen, H. Xu, Y. Zhang, F. Dong, P. Tan, T. Zhao, M. Ni, 2019, Combined methane reforming by carbon dioxide and steam in proton conducting solid oxide fuel cells for syngas/power co-generation, International Journal of Hydrogen Energy, 44, 15313–15321.
38. Z. Wu, P. Tan, P. Zhu, W. Cai, B. Chen, F. Yang, M. Ni, 2019, Performance analysis of a novel SOFC-HCCI engine hybrid system coupled with metal hydride reactor for H2 addition by waste heat recovery, Energy Conversion and Management, 191, 119–131.
37. Z. Wu, P. Tan, B. Chen, W. Cai, M. Chen, X. Xu, M. Ni, 2019, Dynamic modeling and operation strategy of an NG-fueled SOFC-WGS-TSA-PEMFC hybrid energy conversion system for fuel cell vehicle by using MATLAB/SIMULINK, Energy, 175, 567–579
36. H.R. Xu, B. Chen, P. Tan, Q. Sun, M. M. Maroto-Valer, M. Ni, 2019, Modelling of a hybrid system for on-site power generation from solar fuels, Applied Energy, 240, 709–718
35. B. Chen, H.R. Xu, P. Tan, Y. Zhang, X. Xu, W. Cai, M. Chen, M. Ni, 2019, Thermal modelling of ethanol-fuelled Solid Oxide Fuel Cells, Applied Energy, 237, 476–486
34. H.R. Xu, B. Chen, P. Tan, J. Xuan, M. M. Maroto-Valer, M. Ni, 2019, Modeling of all-porous solid oxide fuel cells with a focus on the electrolyte porosity design, Applied Energy, 235, 602–611.
33. H.R. Xu, B. Chen, P. Tan, W.Z. Cai, W. He, Y.Y. Wu, H.C. Zhang, M. Ni, 2018, A feasible way to handle the heat management of direct carbon solid oxide fuel cells, Applied Energy, 226, 881–890.
32. H.R. Xu, B. Chen, P. Tan, W.Z. Cai, W. He, D. Farrusseng, M. Ni, 2018, Modeling of all porous solid oxide fuel cells, Applied Energy, 219, 105–113.
31. H.R. Xu, B. Chen, H. Zhang, P. Tan, G.M. Yang, J. T.S. Irvine, M. Ni, 2018, Experimental and modeling study of high performance direct carbon solid oxide fuel cell with in situ catalytic steam-carbon gasification reaction, Journal of Power Sources, 382, 135–143.
30. Z.M. Yang, H.R. Xu, B. Chen, P. Tan, H.C. Zhang, M. Ni, 2018, Numerical modeling of a cogeneration system based on a direct carbon solid oxide fuel cell and a thermophotovoltaic cell, Energy Conversion and Management, 171, 279–286.
29. B. Chen, H.R Xu, Q. Sun, H.C. Zhang, P. Tan, W.Z. Cai, W. He, M. Ni, 2018, Syngas/power cogeneration from proton conducting solid oxide fuel cells assisted by dry methane reforming: A thermal-electrochemical modelling study, Energy Conversion and Management, 167, 37–44.
28. H.R. Xu, B. Chen, P. Tan, H. Zhang, J. Yuan, J. T.S. Irvine, M. Ni, 2018, Performance improvement of a direct carbon solid oxide fuel cell through integrating an Otto heat engine, Energy Conversion and Management, 165, 761–770.
27. B. Chen, H.R. Xu, H.C. Zhang, P. Tan, W.Z. Cai, M. Ni, 2017, A novel design of solid oxide electrolyzer for hydrogen generation and storage integrating magnesium hydride bed - A dynamic simulation study, Applied Energy, 200, 206-272.
26. Y.X. Ren, T.S. Zhao, P. Tan, Z. H. Wei, X. L. Zhou, 2017, Modeling of an aprotic Li-O2 battery incorporating multiple-step reactions, Applied Energy, 187, 706–716.
25. R.H. Zhang, T.S. Zhao, P. Tan, M.C. Wu, H.R. Jiang, 2017, Ruthenium dioxide-decorated carbonized tubular polypyrrole as a bifunctional catalyst for non-aqueous lithium-oxygen batteries, Electrochimica Acta, 257, 281–289.
24. H.R. Xu, H.C. Zhang, B. Chen, P. Tan, J.L. Yuan, J. Liu; M. Ni, 2017, Performance improvement of a direct carbon solid oxide fuel cell system by combining with a Stirling cycle, Energy, 140, 979–987.
23. R.H. Zhang, T.S. Zhao, M.C. Wu, P. Tan, H.R. Jiang, 2017, Paramecium-like Fe2O3 nanotubes as a cost-efficient catalyst for non-aqueous Li-O2 batteries, Energy Technology, 6, 263–272
22. X.B. Zhu, T.S. Zhao, P. Tan, Z.H. Wei, M.C. Wu, 2016, A high-performance solid-state lithium-oxygen battery with a ceramic-carbon nanostructured electrode, Nano Energy, 26, 565–576.
21. Y.X. Ren, T.S. Zhao, M. Liu, P. Tan, Y.K. Zeng, 2016, Modeling of lithium-sulfur batteries incorporating the effect of Li2S precipitation, Journal of Power Sources, 336, 115–125.
20. C.Y. Jung, T.S. Zhao, L. Zeng, P. Tan, 2016, Vertically aligned carbon nanotube-ruthenium dioxide core-shell cathode for non-aqueous lithium-oxygen batteries, Journal of Power Sources, 331, 82–90.
19. Z.H. Wei, T.S. Zhao, X.B. Zhu, P. Tan, 2016, MnO2-x nanosheets on stainless steel felt as a carbon- and binder-free cathode for non-aqueous lithium-oxygen batteries, Journal of Power Sources, 306, 724–732.
18. Y.Y. Huang, T.S. Zhao, L. Zeng, P. Tan, J.B. Xu, 2016, A facile approach for preparation of highly dispersed platinum-copper/carbon nanocatalyst toward formic acid electro-oxidation, Electrochimica Acta, 190, 956–963.
17. M.C. Wu, T.S. Zhao, P. Tan, H.R. Jiang, X.B. Zhu, 2016, Cost-effective carbon supported Fe2O3 nanoparticles as an efficient catalyst for non-aqueous lithium-oxygen batteries, Electrochimica Acta, 211, 545–551.
16. H.R. Jiang, P. Tan, M. Liu, Y.K. Zeng, T.S. Zhao, 2016, Unraveling the positive roles of point defects on carbon surfaces in nonaqueous lithium-oxygen batteries, Journal of Physical Chemistry C, 120, 18394–18402.
15. H.R. Jiang, T.S. Zhao, L. Shi, P. Tan, L. An, 2016, First-principles study of nitrogen-, boron-doped graphene and co-doped graphene as the potential catalysts in non-aqueous Li-O2 batteries, Journal of Physical Chemistry C, 120, 6612–6618.
14. X.B. Zhu, T.S. Zhao, Z.H. Wei, P. Tan, L. An, 2015, A high-rate and long cycle life solid-state lithium-air battery, Energy & Environmental Science, 8, 3745–3754.
13. X.B. Zhu, T.S. Zhao, Z.H. Wei, P. Tan, G. Zhao, 2015, A novel solid-state Li-O2 battery with an integrated electrolyte and cathode structure, Energy & Environmental Science, 8, 2782–2790.
12. L. An, T.S. Zhao, X. Yan, X. Zhou, P. Tan, 2015, The dual role of hydrogen peroxide in fuel cells, Science Bulletin, 60, 55–64.
11. Z.H. Wei, T.S. Zhao, X.B. Zhu, L. An, P. Tan, 2015, Integrated porous cathode made of pure perovskite lanthanum nickel oxide for nonaqueous lithium-oxygen batteries, Energy Technology, 3, 1093–1100.
10. Z.H. Wei, P. Tan, L. An, T.S. Zhao, 2014, A non-carbon cathode electrode for lithium–oxygen batteries, Applied Energy, 60, 134–138.
9. T.R. Fu, P. Tan, J. Ren, H.S. Wang, 2014, Total hemispherical radiation properties of oxidized nickel at high temperatures, Corrosion Science, 83, 272–280.
8. L. An, T.S. Zhao, Z.H. Chai, P. Tan, L. Zeng, 2014, Mathematical modeling of an anion-exchange membrane water electrolyzer for hydrogen production, International Journal of Hydrogen Energy, 39, 19869–19876.
7. L. An, T.S. Zhao, Z.H. Chai, L. Zeng, P. Tan, 2014, Modeling of the mixed potential in hydrogen peroxide-based fuel cells, International Journal of Hydrogen Energy, 39, 7407–7416.
6. T.R. Fu, P. Tan, M.H. Duan, 2014, Simultaneous measurements of high-temperature total hemispherical emissivity and thermal conductivity using a steady-state calorimetric technique, Measurement Science and Technology, 26, 015003.
5. L. An, Z.H. Chai, L. Zeng, P. Tan, T.S. Zhao, 2013, Mathematical modeling of alkaline direct ethanol fuel cells, International Journal of Hydrogen Energy, 38, 14067–14075.
4. T.R. Fu, P. Tan, M.H. Zhong, 2012, Experimental research on the influence of surface conditions on the total hemispherical emissivity of iron-based alloys, Experimental Thermal and Fluid Science, 40, 159–167.
3. T.R. Fu, P. Tan, 2012, Transient calorimetric measurement methods for total hemispherical emissivity, Journal of Heat Transfer-Transactions of the ASME, 134, 111601.
2. T.R. Fu, P. Tan, C.H. Pang, 2012, A steady-state measurement system for total hemispherical emissivity, Measurement Science and Technology, 23, 025006.
1. T.R. Fu, P. Tan, C.H. Pang, H. Zhao, Y. Shen, 2011, Fast fiber-optic multi-wavelength pyrometer, Review of Scientific Instruments, 82, 064902.
|