59. W. Yu, W. Shang, Z. Zhao, Y. Ma, P. Tan*, 2022 Elucidating the performance variations and critical issues of Zn electrodes in different types of aqueous electrolytes for Znbased rechargeable batteries, Electrochimica Acta, 425 140702.(IF: 6.901)
58. W. Shang, H. Wang, W. Yu, Y. He, Y. Ma, R. Li, Z. Wu*, P. Tan*, 2022, A zincair battery capable of working in anaerobic conditions and fast environmental energy harvesting, Cell Reports Physical Science, 3, 100904.
57. Z. Zhang, X. Xiao, W. Yu, Z. Zhao, P. Tan*, 2022, Modeling of a nonaqueous LiO2 battery incorporating synergistic reaction mechanisms, microstructure, and species transport in the porous electrode, Electrochimica Acta, 140510. (IF: 6.901)
56. Y. Cui, Y. He, W. Yu, W. Shang, Y. Ma, P. Tan*, 2022, Insitu observation of the Zn electrodeposition on the planar electrode in the alkaline electrolytes with different viscosities, Electrochimica Acta, 418, 140344. (IF: 6.901)
55. Y. He, Y. Cui, W. Shang, Z. Zhao, P. Tan*, 2022, Insight into potential oscillation behaviors during Zn electrodeposition: Mechanism and Inspiration for rechargeable Zn batteries, Chemical Engineering Journal, 438, 135541.(IF: 13.273)
54. Y. Liu, P. Tan*, 2022, Numerical investigation on heat transfer characterization of liquid lithium metal in pipe, Journal of University of Science and Technology of China, 52, 7. (IF: 0.53)
53. W. Shang, W. Yu, X. Xiao, Y. Ma, Y. He, Z. Zhao, P, Tan*, 2022, SelfActivated Formation of Hierarchical Co3O4 Nanoflakes with High ValenceState Conversion Capability for UltrahighCapacity Zn–Co Batteries. Small, 2107149. (IF: 13.280)
52. W. Shang, W. Yu, X. Xiao, Y. Ma, Y. He, P, Tan*, 2022, FreeStanding Electrode of Core–ShellStructured NiO@ Co3S4 for HighPerformance Hybrid Zn–Co/Air Batteries, Energy & Fuels, 36, 11211128. (IF: 3.605)
51. Z. Zhao, W. Yu, W. Shang, Y. He, Y. Ma, Z. Zhang, P. Tan*, 2022, Revealing the effects of conductive carbon materials on the cycling stability of rechargeable Znair batteries, International Journal of Energy Research, 46, 7694–7703. (IF: 5.164)
50. W. Yu, W. Shang, Y. He, Z. Zhao, Y. Ma, P. Tan*, 2022, Unraveling the mechanism of nonuniform zinc deposition in rechargeable zincbased batteries with vertical orientation, Chemical Engineering Journal, 431, 134032. (IF: 13.273)
49. W. Shang, W. Yu, X. Xiao, Y. Ma, Z. Chen, M. Ni, P. Tan*, 2022, Optimizing the charging protocol to address the selfdischarge issues in rechargeable alkaline ZnCo batteries, Applied Energy, 308, 118366. (IF: 9.746)
48. W. Yu, Y. Liu, L. Liu, X. Yang, Y. Han, P. Tan*, 2022, Rechargeable aqueous ZnLiMn2O4 hybrid batteries with high performance and safety for energy storage, Journal of Energy Storage, 45, 103744.(IF: 6.583)
47. Y. He, W. Shang, M. Ni, Y. Huang, H. Zhao, P. Tan*, 2022, InSitu Observation of the Gas Evolution Process on the Air Electrode of ZnAir Batteries during Charging, Chemical Engineering Journal, 427, 130862. (IF: 13.273)
46. W. Shang, W. Yu, Y. Ma, P. Tan*, 2021, Development of the Ag nanoparticledecorated Co3O4 electrode for highperformance hybrid Zn batteries, Journal of University of Science and Technology of China, 51, 4. (IF: 0.53)
45. X. Xiao, Z. Zhang, W. Yu, W. Shang, Y. Ma, X. Zhu*, and P. Tan*, 2021, Ultrafine CoDoped NiO Nanoparticles Decorated on Carbon Nanotubes Improving the Electrochemical Performance and Cycling Stability of Li−CO2 Batteries, ACS Applied Energy Materials, 2021, 4, 10, 11858–11866. (IF: 6.024)
44. W. Shang, W. Yu, Y. Ma, Y. He, Z. Zhao, M. Ni, H. Zhao, P. Tan*, 2021, Constructing the Triple‐Phase Boundaries of Integrated Air Electrodes for High‐Performance Zn–Air Batteries, Advanced Materials Interfaces, 2101256. (IF: 6.147)
43. Z. Zhao, W. Yu, Y. He, W. Shang, Y. Ma, H. Zhao, P. Tan*, 2021, Revealing the Effects of Structure Design and Operating Protocols on the Electrochemical Performance of Rechargeable ZnAir Batteries, Journal of The Electrochemical Society, 168, 100510. (IF: 4.316)
42. Z. Chen, Y. Liu, W. Yu, Q. He, M. Ni, S. Yang, S. Zhang, P. Tan*, 2021, Cost evaluation and sensitivity analysis of the alkaline zinciron flow battery system for largescale energy storage applications, Journal of Energy Storage, 44, 103327. (IF: 6.583)
41. Y. Ma, W. Shang, W. Yu, X. Chen, W. Xia, C. Wang, P. Tan*, 2021, Synthesis of Ultrasmall NiCo2O4 NanoparticleDecorated NDoped Graphene Nanosheets as an Effective Catalyst for Zn–Air Batteries, Energy & Fuels. 35, 14188−14196. (IF: 3.605)
40. W. Yu, W. Shang, X. Xiao, Y. Ma, Z. Chen, B. Chen, H. Xu, M. Ni, P. Tan*, 2021, Elucidating the mechanism of discharge performance improvement in zincair flow batteries: A combination of experimental and modeling investigations, Journal of Energy Storage, 40, 102779. (IF: 6.583)
39. Y. Ma, W. Yu, W. Shang, X. Xiao, Y. Dai, C. Cheng, M. Ni, P. Tan*, 2021, Investigation on the electrochemical performance of hybrid zinc batteries through numerical analysis, Electrochimica Acta, 375, 137967. (IF: 6.901)
38. W. Shang, W. Yu, X. Xiao, Y. Ma, P. Tan*, M. Ni, 2021, Unravel the influences of Ni substitution on Cobased electrodes for rechargeable alkaline ZnCo batteries, Journal of Power Sources, 483, 229192. (IF: 9.127)
37. Z. Chen, W. Yu, Y. Liu, Y. Zeng, Q. He, P. Tan*, M. Ni, 2021, Mathematical modeling and numerical analysis of alkaline zinciron flow batteries for energy storage applications, Chemical Engineering Journal, 405, 126684. (IF: 13.273)
36. X. Xiao, W. Yu, W. Shang, P. Tan*, Y. Dai, C. Cheng, M. Ni, 2020, Investigation on the Strategies for Discharge Capacity Improvement of Aprotic LiCO2 Batteries, Energy & Fuels. 34, 16870−16878. (IF: 3.605)
35. X Xiao, P. Tan*, X. Zhu, Y. Dai, C. Cheng, M. Ni, 2020, Investigation on the discharge and charge behaviors of LiCO2 batteries with carbon nanotube electrodes, ACS Sustain. Chem. Eng, 8, 9742–9750. (IF: 8.198)
34. W. Shang, W. Yu, Y. Liu, R. Li, Y. Dai, C. Cheng, P. Tan*, M. Ni, 2020, Rechargeable alkaline zinc batteries: Progress and challenges, Energy Storage Mater, 31, 44–57. (IF: 17.789)
33. W. Shang, W. Yu, X. Xiao, Y. Ma, C. Cheng, Y. Dai, P. Tan*, M. Ni, 2020, Microstructuretuned cobalt oxide electrodes for highperformance ZnCo batteries, Electrochimica Acta, 353, 136535.(IF: 6.901)
32. P. Tan*, X. Xiao, Y. Dai, C. Cheng, M. Ni, 2020, Photoassisted nonaqueous lithiumoxygen batteries: Progress and prospects, Renewable and Sustainable Energy Reviews, 127, 109877. (IF: 14.982)
31. Y. Ma, X. Xiao, W. Yu, W. Shang, P. Tan*, Z. Wu, M. Ni, 2020, Mathematical modeling and numerical analysis of the discharge process of an alkaline zinccobalt battery, Journal of Energy Storage, 30, 101432. (IF: 6.583)
30. W. Yu, W. Shang, X. Xiao, P. Tan*, B. Chen, Z. Wu, H. Xu, 2020, Achieving a stable zinc electrode with ultralong cycle life by implementing a flowing electrolyte, Journal of Power Sources, 453, 227856. (IF: 9.127)
29. X. Xiao, W. Shang, W. Yu, Y. Ma, P. Tan*, B. Chen, W. Kong, H.R. Xu, M. Ni, 2020, Toward the rational design of cathode and electrolyte materials for aprotic Li–CO2 batteries: a numerical investigation, International Journal of Energy Research, 44, 496–507. (IF: 5.164)
28. W. Yu, W. Shang, P. Tan*, B. Chen, Z. Wu, H. Xu, Z. Shao, M. Liu, M. Ni, 2019, Toward a New Generation of Low Cost, Efficient, and Durable MetalAir FlowBatteries, Journal of Materials Chemistry A, 7, 26744–26768. (IF: 12.732)
27. W. Shang, W. Yu, P. Tan*, B. Chen, Z. Wu, H.R. Xu, M. Ni, 2019, Achieving high energy density and efficiency through integration: progress in hybrid zinc batteries, Journal of Materials Chemistry A, 7, 15564–15574. (IF: 12.732)
26. W. Shang, W. Yu, P. Tan*, B. Chen, Z. Wu, H.R. Xu, M. Ni, 2019, A highperformance Zn battery based on selfassembled nanostructured NiCo2O4 electrode, Journal of Power Sources, 421, 6–13. (IF: 9.127)
25. P. Tan, B. Chen, H.R. Xu, W.Z. Cai, W. He, M. Ni, 2019, Insitu growth of Co3O4 nanowireassembled clusters on nickel foam for aqueous rechargeable ZnCo3O4 and Znair batteries, Applied Catalysis B: Environmental, 241, 104–112. (IF: 19.503)
24. P. Tan, B. Chen, H.R. Xu, W.Z. Cai, W. He, M. Ni, 2019, Porous Co3O4 nanoplates as the active material for rechargeable Znair batteries with high energy efficiency and cycling stability, Energy, 166, 1241–1248. (IF: 7.147)
23. P. Tan, Z. Wu, B. Chen, H.R. Xu, W.Z. Cai, M. Ni, 2019, Exploring oxygen electrocatalytic activity and pseudocapacitive behavior of Co3O4 nanoplates in alkaline solutions, Electrochimica Acta, 310, 86–95. (IF: 6.901)
22. P. Tan, Z. Wu, B. Chen, H.R. Xu, W.Z. Cai, S.W. Jin, Z.P. Shao, M. Ni, 2019, Cationsubstitutiontuned oxygen electrocatalyst of spinel cobaltite MCo2O4 (M = Fe, Co, and Ni) hexagonal nanoplates for rechargeable Znair batteries, Journal of The Electrochemical Society, 166, A3448–A3455. (IF: 4.316)
21. P. Tan, B. Chen, H.R. Xu, W.Z. Cai, W. He, M. Chen, M. Ni, 2019, Synthesis of Fe2O3 NanoparticleDecorated NDoped Reduced Graphene Oxide as an Effective Catalyst for ZnAir Batteries, Journal of The Electrochemical Society, 166, A616–A622. (IF: 4.316)
20. P. Tan, B. Chen, H.R. Xu, W.Z. Cai, W. He, M. Ni, 2018, Growth of Al and Co codoped NiO nanosheets on carbon cloth as the air electrode for Znair batteries with high cycling stability, Electrochimica Acta, 290, 21–29. (IF: 6.901)
19. P. Tan, B. Chen, H.R. Xu, W.Z. Cai, W. He, H.C. Zhang, M.L. Liu, Z.P. Shao, M. Ni, 2018, Integration of Zn−Ag and Zn−Air Batteries: A Hybrid Battery with the Advantages of Both, ACS Applied Material & Interfaces, 10, 36873−36881. (IF: 9.229)
18. P. Tan, B. Chen, H.R. Xu, H.C. Zhang, W.Z. Cai, M. Ni, M.L. Liu, Z.P. Shao, 2018, Nanoporous NiO/Ni(OH)2 Plates Incorporated with Carbon Nanotubes as Active Materials of Rechargeable Hybrid Zinc Batteries for Improved Energy Efficiency and HighRate Capability, Journal of The Electrochemical Society, 165, A2119–A2126. (IF: 4.316)
17.P. Tan, B. Chen, H.R. Xu, W.Z. Cai, W. He, M.L. Liu, Z.P. Shao, M. Ni, 2018, Co3O4 Nanosheets as Active Material for Hybrid Zn Batteries, Small, 14, 1800225. (IF: 13.281)
16. P. Tan, B. Chen, H.R. Xu, W.Z. Cai, W. He, M. Ni, 2018, Investigation on the electrode design of hybrid ZnCo3O4/air batteries for performance improvements, Electrochimica Acta, 283, 1028–1036. (IF: 6.901)
15. P. Tan, B. Chen, H.R. Xu, H.C. Zhang, W.Z. Cai, M. Ni, M.L. Liu, Z.P. Shao, 2017, Flexible MetalAir Batteries: Recent Advances, Challenges, and Future Perspectives, Energy & Environmental Science, 10, 2056–2080. (IF: 38.532)
14. P. Tan, W. Kong, Z.P. Shao, M.L. Liu, M. Ni, 2017, Advances in modeling and simulation of Liair batteries, Progress in Energy and Combustion Science, 62, 155–189. (IF: 29.394)
13. P. Tan, M.L. Liu, Z.P. Shao, M. Ni, 2017, Recent advances in perovskite oxides as electrode materials for nonaqueous lithiumoxygen batteries, Advanced Energy Materials, 7, 1602674. (IF: 29.368)
12. P. Tan, M. Ni, Z.P. Shao, B. Chen, W. Kong, 2017, Numerical investigation of a nonaqueous lithiumoxygen battery based on lithium superoxide as the discharge product, Applied Energy, 203, 254–266. (IF: 9.746)
11. P. Tan, H.R. Jiang, X.B. Zhu, L. An, C.Y. Jung, L. Shi, M.C. Wu, W. Shyy, T.S. Zhao, 2017, Advances and challenges in lithiumair batteries, Applied Energy, 204, 780–806. (IF: 9.746)
10. P. Tan, Z.H. Wei, W. Shyy, T.S. Zhao, X.B. Zhu, 2016, A nanostructured RuO2/NiO cathode enables the operation of nonaqueous lithiumair batteries in ambient air, Energy & Environmental Science, 9, 1783–1793. (IF: 38.532)
9. P. Tan, W. Shyy, T.S. Zhao, R.H. Zhang, X.B. Zhu, 2016, Effects of moist air on the cycling performance of nonaqueous lithiumair batteries, Applied Energy, 182, 569–575. (IF: 9.746)
8. P. Tan, W. Shyy, M.C. Wu, Y.Y. Huang, T.S. Zhao, 2016, Carbon electrode with NiO and RuO2 nanoparticles improves the cycling life of nonaqueous lithiumoxygen batteries, Journal of Power Sources, 326, 303–312. (IF: 9.127)
7. P. Tan, L. Shi, W. Shyy, T.S. Zhao, 2016, Morphology of the discharge product in nonaqueous lithiumoxygen batteries: furrowed toroid particles correspond to a higher energy efficiency, Energy Technology, 4, 393–400. (IF: 3.631)
6. P. Tan, W. Shyy, T.S. Zhao, X.B. Zhu, Z.H. Wei, 2015, A RuO2 nanoparticledecorated buckypaper cathode for nonaqueous lithiumoxygen batteries, Journal of Materials Chemistry A, 3, 19042–19049. (IF: 12.732)
5. P. Tan, W. Shyy, T.S. Zhao, Z.H. Wei, L. An, 2015, Discharge product morphology versus operating temperature in nonaqueous lithiumair batteries, Journal of Power Sources, 278, 133–140. (IF: 9.127)
4. P. Tan, W. Shyy, T.S. Zhao, 2015, What is the ideal distribution of electrolyte inside cathode pores of nonaqueous lithiumair batteries, Science Bulletin, 60, 975–976. (IF: 11.78)
3. P. Tan, W. Shyy, Z.H. Wei, L. An, T.S. Zhao, 2014, A carbon powdernanotube composite cathode for nonaqueous lithiumair batteries, Electrochimica Acta, 147, 1–8. (IF: 6.901)
2. P. Tan, W. Shyy, L. An, Z.H. Wei, T.S. Zhao, 2014, A gradient porous cathode for nonaqueous lithiumair batteries leading to a high capacity, Electrochemistry Communications, 46, 111–114. (IF: 4.724)
1. P. Tan, Z.H. Wei, W. Shyy, T.S. Zhao, 2013, Prediction of the theoretical capacity of nonaqueous lithiumair batteries, Applied Energy, 4, 275–282. (IF: 9.746)
58. Yu Wang, Xingbao Zhu, Peng Tan, Yuanguo Wu, Zining Man, Xiangyu Wen, Zhe Lu, 2022, Safe and EnergyDense Flexible SolidState Lithium−Oxygen Battery with a Structured ThreeDimensional Polymer Electrolyte, ACS Sustainable Chem. Eng, 2022, 10, 4894−4903.
57. Jie Yu, Yawen Dai, Zhenbao Zhang, Tong Liu, Siyuan Zhao, Chun Cheng, Peng Tan, Zongping Shao, Meng Ni, Tailoring structural properties of carbon via implanting optimal co nanoparticles in n‐rich carbon cages toward high‐efficiency oxygen electrocatalysis for rechargeable znair batteries, 2022, Carbon Energy, doi: 10.1002/cey2.171.
56. Yawen Dai, Jie Yu, Peng Tan, Chun Cheng, Tong Liu, Siyuan Zhao, Zongping Shao, Tianshou Zhao, Meng Ni, 2022, Microscaledecoupled chargedischarge reaction sites for an air electrode with abundant triplephase boundary and enhanced cycle stability of ZnAir batteries, Journal of Power Sources, 525, 231108.
55. Yawen Dai, Jie Yu, Zhenbao Zhang, Shuo Zhai, Chun Cheng, Siyuan Zhao, Peng Tan, Zongping Shao, Meng Ni, 2021, Regulating the Interfacial Electron Density of La0.8Sr0.2Mn0.5Co0.5O3/RuOx for Efficient and LowCost Bifunctional Oxygen Electrocatalysts and Rechargeable ZnAir Batteries, ACS Appl. Mater. Interfaces, 13, 61098−61106.
54. Zhen Wu, Pengfei Zhu, Jing Yao, Sandra Kurko, Jianwei Ren, Peng Tan, Haoran Xu, Meng Ni, 2021, Methanol to power through highefficiency hybrid fuel cell system: Thermodynamic, thermoeconomic, and technoeconomic (3T) analyses in Northwest China, Energy Conversion and Management, 232, 113899.
53. Qian Lu, Xiaohong Zou, Cui Wang, Kaiming Liao, Peng Tan, Ran Ran, Wei Zhou, Meng Ni, Zongping Shao, 2021, Tailoring Charge and Mass Transport in Cation/Anioncodoped Ni3N / Ndoped CNT Integrated Electrode toward Rapid Oxygen Evolution for FastCharging ZincAir Batteries, Energy Storage Materials, 39, 11–20.
52. Haoran Xu, Jingbo Ma, Peng Tan, Zhen Wu, Yanxiang Zhang, Meng Ni, Jin Xuan, 2021, Enabling thermalneutral electrolysis for CO2tofuel conversions with a hybrid deep learning strategy, Energy Conversion and Management, 230, 113827.
51. Yawen Dai, Jie Yu, Zhenbao Zhang, Chun Cheng, Peng Tan, Zongping Shao, Meng Ni, 2021, Interfacial La Diffusion in the CeO2/LaFeO3 Hybrid for Enhanced Oxygen Evolution Activity, ACS Appl. Mater. Interfaces, 13 (2), 27992806.
50. Chun Cheng, Sijia Wang, Peng Tan, Yawen Dai, Jie Yu, Rui Cheng, ShienPing, Meng Ni, 2021, Insights into the Thermopower of Thermally Regenerative Electrochemical Cycle for Low Grade Heat Harvesting, ACS Energy Letters, 6, 329336.
49. Fenghao Lia, Yuge Wei, Peng Tan, Yikai Zeng, Yanping Yuan, 2020, Numerical investigations of effects of the interdigitated channel spacing on overall performance of vanadium redox flow batteries, Journal of Energy Storage, 32, 101781.
48. Zhen Wu, Pengfei Zhu, Jing Yao, Peng Tan, Haoran Xu, Bin Chen, Fusheng Yang, Meng Ni, 2020, Dynamic modeling and operation strategy of natural gas fueled SOFCEngine hybrid power system with hydrogen addition by metal hydride for vehicle applications, eTransportation, 5, 100074.
47. Qian Lu, Yanan Guo, Peng Mao, Kaiming Liao, Xiaohong Zou, Jie Dai, Peng Tan, Ran Ran, Wei Zhou, Meng Ni, Zongping Shao, 2020, Rich atomic interfaces between sub1 nm RuOx clusters and porous Co3O4 nanosheets boost oxygen electrocatalysis bifunctionality for advanced Znair batteries, Energy Storage Materials, 32, 2029.
46. Yawen Dai, Jie Yu, Chun Cheng, Peng Tan, Meng Ni, 2020, Minireview of perovskite oxides as oxygen electrocatalysts for rechargeable zinc–air batteries, Chemical Engineering Journal, 397, 125516.
45. H. Xu, J. Ma, P. Tan, B. Chen, Z. Wu, Y. Zhang, H. Wang, J. Xuan, M. Ni, 2020, Towards online optimisation of solid oxide fuel cell performance: Combining deep learning with multiphysics simulation, Energy and AI, 1, 100003.
44. Y. Dai, J. Yu, C. Cheng, P. Tan, M. Ni, 2020, Engineering the interfaces in watersplitting photoelectrodes – an overview of the technique development, Journal of Materials Chemistry A, 8, 69847002.
43. H. Yan, G. Wang, Z. Lu, P. Tan, T. H. Kwan, H. Xu, B. Chen, M. Ni, Z. Wu, 2020, Technoeconomic evaluation and technology roadmap of the MWescale SOFCPEMFC hybrid fuel cell system for clean power generation, Journal of Cleaner Production, 255, 12022.
42. Z. Wu, P. Zhu, J. Yao, P. Tan, H. Xu, B. Chen, F. Yang, Z. Zhang, M. Ni, 2020, Thermoeconomic modeling and analysis of an NGfueled SOFCWGSTSAPEMFC hybrid energy conversion system for stationary electricity power generation, Energy, 192, 116613.
41. Q. Lu, J. Yu, X. Zou, K. Liao, P. Tan, W. Zhou, M. Ni, Z. Shao, 2019, Self‐Catalyzed Growth of Co, N‐Codoped CNTs on Carbon‐Encased CoSx Surface: A Noble‐Metal‐Free Bifunctional Oxygen Electrocatalyst for Flexible Solid Zn–Air Batteries, Advanced Functional Materials, 29, 1904481.
40. H.R. Xu, B. Chen, P. Tan, Y. Zhang, Q. He, Z. Wu, M. Ni, 2019, The thermal effects of all porous solid oxide fuel cells, Journal of Power Sources, 440, 227102.
39. B. Chen, H. Xu, Y. Zhang, F. Dong, P. Tan, T. Zhao, M. Ni, 2019, Combined methane reforming by carbon dioxide and steam in proton conducting solid oxide fuel cells for syngas/power cogeneration, International Journal of Hydrogen Energy, 44, 15313–15321.
38. Z. Wu, P. Tan, P. Zhu, W. Cai, B. Chen, F. Yang, M. Ni, 2019, Performance analysis of a novel SOFCHCCI engine hybrid system coupled with metal hydride reactor for H2 addition by waste heat recovery, Energy Conversion and Management, 191, 119–131.
37. Z. Wu, P. Tan, B. Chen, W. Cai, M. Chen, X. Xu, M. Ni, 2019, Dynamic modeling and operation strategy of an NGfueled SOFCWGSTSAPEMFC hybrid energy conversion system for fuel cell vehicle by using MATLAB/SIMULINK, Energy, 175, 567–579
36. H.R. Xu, B. Chen, P. Tan, Q. Sun, M. M. MarotoValer, M. Ni, 2019, Modelling of a hybrid system for onsite power generation from solar fuels, Applied Energy, 240, 709–718
35. B. Chen, H.R. Xu, P. Tan, Y. Zhang, X. Xu, W. Cai, M. Chen, M. Ni, 2019, Thermal modelling of ethanolfuelled Solid Oxide Fuel Cells, Applied Energy, 237, 476–486
34. H.R. Xu, B. Chen, P. Tan, J. Xuan, M. M. MarotoValer, M. Ni, 2019, Modeling of allporous solid oxide fuel cells with a focus on the electrolyte porosity design, Applied Energy, 235, 602–611.
33. H.R. Xu, B. Chen, P. Tan, W.Z. Cai, W. He, Y.Y. Wu, H.C. Zhang, M. Ni, 2018, A feasible way to handle the heat management of direct carbon solid oxide fuel cells, Applied Energy, 226, 881–890.
32. H.R. Xu, B. Chen, P. Tan, W.Z. Cai, W. He, D. Farrusseng, M. Ni, 2018, Modeling of all porous solid oxide fuel cells, Applied Energy, 219, 105–113.
31. H.R. Xu, B. Chen, H. Zhang, P. Tan, G.M. Yang, J. T.S. Irvine, M. Ni, 2018, Experimental and modeling study of high performance direct carbon solid oxide fuel cell with in situ catalytic steamcarbon gasification reaction, Journal of Power Sources, 382, 135–143.
30. Z.M. Yang, H.R. Xu, B. Chen, P. Tan, H.C. Zhang, M. Ni, 2018, Numerical modeling of a cogeneration system based on a direct carbon solid oxide fuel cell and a thermophotovoltaic cell, Energy Conversion and Management, 171, 279–286.
29. B. Chen, H.R Xu, Q. Sun, H.C. Zhang, P. Tan, W.Z. Cai, W. He, M. Ni, 2018, Syngas/power cogeneration from proton conducting solid oxide fuel cells assisted by dry methane reforming: A thermalelectrochemical modelling study, Energy Conversion and Management, 167, 37–44.
28. H.R. Xu, B. Chen, P. Tan, H. Zhang, J. Yuan, J. T.S. Irvine, M. Ni, 2018, Performance improvement of a direct carbon solid oxide fuel cell through integrating an Otto heat engine, Energy Conversion and Management, 165, 761–770.
27. B. Chen, H.R. Xu, H.C. Zhang, P. Tan, W.Z. Cai, M. Ni, 2017, A novel design of solid oxide electrolyzer for hydrogen generation and storage integrating magnesium hydride bed  A dynamic simulation study, Applied Energy, 200, 206272.
26. Y.X. Ren, T.S. Zhao, P. Tan, Z. H. Wei, X. L. Zhou, 2017, Modeling of an aprotic LiO2 battery incorporating multiplestep reactions, Applied Energy, 187, 706–716.
25. R.H. Zhang, T.S. Zhao, P. Tan, M.C. Wu, H.R. Jiang, 2017, Ruthenium dioxidedecorated carbonized tubular polypyrrole as a bifunctional catalyst for nonaqueous lithiumoxygen batteries, Electrochimica Acta, 257, 281–289.
24. H.R. Xu, H.C. Zhang, B. Chen, P. Tan, J.L. Yuan, J. Liu; M. Ni, 2017, Performance improvement of a direct carbon solid oxide fuel cell system by combining with a Stirling cycle, Energy, 140, 979–987.
23. R.H. Zhang, T.S. Zhao, M.C. Wu, P. Tan, H.R. Jiang, 2017, Parameciumlike Fe2O3 nanotubes as a costefficient catalyst for nonaqueous LiO2 batteries, Energy Technology, 6, 263–272
22. X.B. Zhu, T.S. Zhao, P. Tan, Z.H. Wei, M.C. Wu, 2016, A highperformance solidstate lithiumoxygen battery with a ceramiccarbon nanostructured electrode, Nano Energy, 26, 565–576.
21. Y.X. Ren, T.S. Zhao, M. Liu, P. Tan, Y.K. Zeng, 2016, Modeling of lithiumsulfur batteries incorporating the effect of Li2S precipitation, Journal of Power Sources, 336, 115–125.
20. C.Y. Jung, T.S. Zhao, L. Zeng, P. Tan, 2016, Vertically aligned carbon nanotuberuthenium dioxide coreshell cathode for nonaqueous lithiumoxygen batteries, Journal of Power Sources, 331, 82–90.
19. Z.H. Wei, T.S. Zhao, X.B. Zhu, P. Tan, 2016, MnO2x nanosheets on stainless steel felt as a carbon and binderfree cathode for nonaqueous lithiumoxygen batteries, Journal of Power Sources, 306, 724–732.
18. Y.Y. Huang, T.S. Zhao, L. Zeng, P. Tan, J.B. Xu, 2016, A facile approach for preparation of highly dispersed platinumcopper/carbon nanocatalyst toward formic acid electrooxidation, Electrochimica Acta, 190, 956–963.
17. M.C. Wu, T.S. Zhao, P. Tan, H.R. Jiang, X.B. Zhu, 2016, Costeffective carbon supported Fe2O3 nanoparticles as an efficient catalyst for nonaqueous lithiumoxygen batteries, Electrochimica Acta, 211, 545–551.
16. H.R. Jiang, P. Tan, M. Liu, Y.K. Zeng, T.S. Zhao, 2016, Unraveling the positive roles of point defects on carbon surfaces in nonaqueous lithiumoxygen batteries, Journal of Physical Chemistry C, 120, 18394–18402.
15. H.R. Jiang, T.S. Zhao, L. Shi, P. Tan, L. An, 2016, Firstprinciples study of nitrogen, borondoped graphene and codoped graphene as the potential catalysts in nonaqueous LiO2 batteries, Journal of Physical Chemistry C, 120, 6612–6618.
14. X.B. Zhu, T.S. Zhao, Z.H. Wei, P. Tan, L. An, 2015, A highrate and long cycle life solidstate lithiumair battery, Energy & Environmental Science, 8, 3745–3754.
13. X.B. Zhu, T.S. Zhao, Z.H. Wei, P. Tan, G. Zhao, 2015, A novel solidstate LiO2 battery with an integrated electrolyte and cathode structure, Energy & Environmental Science, 8, 2782–2790.
12. L. An, T.S. Zhao, X. Yan, X. Zhou, P. Tan, 2015, The dual role of hydrogen peroxide in fuel cells, Science Bulletin, 60, 55–64.
11. Z.H. Wei, T.S. Zhao, X.B. Zhu, L. An, P. Tan, 2015, Integrated porous cathode made of pure perovskite lanthanum nickel oxide for nonaqueous lithiumoxygen batteries, Energy Technology, 3, 1093–1100.
10. Z.H. Wei, P. Tan, L. An, T.S. Zhao, 2014, A noncarbon cathode electrode for lithium–oxygen batteries, Applied Energy, 60, 134–138.
9. T.R. Fu, P. Tan, J. Ren, H.S. Wang, 2014, Total hemispherical radiation properties of oxidized nickel at high temperatures, Corrosion Science, 83, 272–280.
8. L. An, T.S. Zhao, Z.H. Chai, P. Tan, L. Zeng, 2014, Mathematical modeling of an anionexchange membrane water electrolyzer for hydrogen production, International Journal of Hydrogen Energy, 39, 19869–19876.
7. L. An, T.S. Zhao, Z.H. Chai, L. Zeng, P. Tan, 2014, Modeling of the mixed potential in hydrogen peroxidebased fuel cells, International Journal of Hydrogen Energy, 39, 7407–7416.
6. T.R. Fu, P. Tan, M.H. Duan, 2014, Simultaneous measurements of hightemperature total hemispherical emissivity and thermal conductivity using a steadystate calorimetric technique, Measurement Science and Technology, 26, 015003.
5. L. An, Z.H. Chai, L. Zeng, P. Tan, T.S. Zhao, 2013, Mathematical modeling of alkaline direct ethanol fuel cells, International Journal of Hydrogen Energy, 38, 14067–14075.
4. T.R. Fu, P. Tan, M.H. Zhong, 2012, Experimental research on the influence of surface conditions on the total hemispherical emissivity of ironbased alloys, Experimental Thermal and Fluid Science, 40, 159–167.
3. T.R. Fu, P. Tan, 2012, Transient calorimetric measurement methods for total hemispherical emissivity, Journal of Heat TransferTransactions of the ASME, 134, 111601.
2. T.R. Fu, P. Tan, C.H. Pang, 2012, A steadystate measurement system for total hemispherical emissivity, Measurement Science and Technology, 23, 025006.
1. T.R. Fu, P. Tan, C.H. Pang, H. Zhao, Y. Shen, 2011, Fast fiberoptic multiwavelength pyrometer, Review of Scientific Instruments, 82, 064902.
