2018-2011
         

 

152. 2D Material as Anode for Sodium Ion Batteries: Recent Progress and Perspectives
Y. Wu and Y. Yu*, Energy Storage Materials, 2019, 16, 323-343.

151. Advanced 3D Current Collectors for Lithium Based Batteries
S. Jing, Y. Jiang, H. Ji* and Y. Yu*, Advanced Materials, 2018( accepted).

150. Designed Nano-architectures by Electrostatic Spray Deposition (ESD) for Energy Storage
C. Zhu* Y. Fu and Y. Yu*, Advanced Materials, 2018( accepted).

149. A Flexible Sulfur-Enriched Nitrogen Doped Multichannel Hollow Carbon Nanofibers Film for High Performance Sodium Storage
X. Sun, C. Wang, Y. Gong, L. Gu, Q. Chen and Y. Yu*, Small, 2018 ( accepted).

148. Selenium Embedded in MOF-derived N-doped Microporous Carbon Polyhedrons as A High Performance Cathode for Sodium–Selenium Batteries
S. Li, H. Yang, R. Xu, Y. Jiang, Y. Gong, L. Gu and Y. Yu*, Materials Chemistry Frontiers, 2018, 2, 1574-1582.

147. Amorphous Red Phosphorus Embedded in Sandwiched Porous Carbon Enabling Superior Sodium Storage Performances
Y. Wu, Z. Liu, X. Zhong, X. Cheng, Z. Fan* and Y. Yu*, Small, 2018, 14, 1703472.

146. Multi-electron Reaction Materials for Sodium-based Batteries
F. Wu, C. Zhao, S. Chen, Y. Lu, Y. Hou, Y. Hu, J. Maier and Y. Yu*, Materials Today, 2018.

145. Toward True Lithium-Air Batteries
F. Wu and Y. Yu*, Joule, 2018, 2, 915-817.

144. Sulfur doped Ultra-thin Anatase TiO2 Nanosheets/Graphene Nanocomposite for High-performance Pseudocapacitive Sodium Storage
H. Zhang, Y. Jiang, Z. Qi, X. Zhong and Y. Yu*, Energy Storage Materials, 2018, 12, 37-43.

143. Binding Sulfur-Doped Nb2O5 Hollow Nanospheres on Sulfur-Doped Graphene Networks for Highly Reversible Sodium Storage
F. Liu, X. Cheng, R. Xu, Y. Wu, Y. Jiang and Y. Yu*, Advanced Functional Materials, 2018, 28, 1800394.

142. An Interpenetrating 3D Porous Reticular Nb2O5 @Carbon Thin Film for Superior Sodium Storage
H. Yang, R. Xu, Y. Gong, Y. Yao, L. Gu and Y. Yu*, Nano Energy, 2018, 48, 448-455.

141. Highly Reversible Na Storage in Na3V2(PO4)3 by Optimizing Nanostructure and Rational Surface Engineering
Y. Jiang, X. Zhou, D. Li, X. Cheng, F. Liu and Y. Yu*, Advanced Energy Materials, 2018, 8, 1800068.

140. A Sulfur-Limonene-Based Electrode for Lithium-Sulfur Batteries: High-Performance by Self-Protection
F. Wu, S. Chen, Y. Huang, S. K. Shinha, P. A. van Aken, J. Maier and Y. Yu*, Advanced Materials, 2018, 30, 1706643.

139. 3D Amorphous Carbon with Controlled Porous and Disordered Structures as a High-Rate Anode Material for Sodium-Ion Batteries
P. Lu, Y. Sun, H. Xiang*, X. Liang and Y. Yu* ,Advanced Energy Materials, 2018, 8, 1702434

138. Exploring Hydrogen Molybdenum Bronze for Sodium Ion Storage: Performance Enhancement by Vertical Graphene Core and Conductive Polymer Shell
J. Zhan, S. Deng, Y. Zhong, Y. Wang, X. Wang, Y. Yu* X. Xia* and J. Tu,Nano Energy, 2018, 44, 265-271

137. Design Nitrogen (N) and Sulfur (S) Co-Doped 3D Graphene Network Architectures for High-Performance Sodium Storage
Y. Jiang, Y. Wu, Y. Chen, Z. Qi, J. Shi, L. Gu and Y. Yu* Small, 2018, 14, 1703471.

136. Facile Synthesis of Porous Germanium-iron Bimetal Oxide Nanowires as Anode Materials for Lithium-ion Batteries
X. Zhong, H. Huang, X. Liu and Y. Yu*,Nano Research, 2018, 11, 3702-3709

135. MoS2 Embedded in 3D Interconnected Carbon Nanofiber Film as a Free-standing Anode for Sodium-ion Batteries
H. Yang, M. Wang, X. Liu, Y. Jiang and Y. Yu* ,Nano Research, 2018, 11, 3844-3853

134. A Freestanding and Long-Life Sodium–Selenium Cathode by Encapsulation of Selenium into Microporous Multichannel Carbon Nanofibers
B. Yuan, X. Sun, L. Zeng, Y. Yu* and Q. Wang*,Small, 2018, 14, 1703252.

133. The Nanoscale Circuitry of Battery Electrodes
C. Zhu*, R. Usiskin Y. Yu and J. Maier*, Science, 2017, 358, 1400.

132. Sodium Organic Battery: Greener and Cheaper
L. Shen and Y. Yu* ,Nature Energy, 2017, 11, 836-837.

131. Cobalt Sulfide Quantum Dot Embedded N/S-Doped Carbon Nanosheets with Superior Reversibility and Rate Capability for Sodium-Ion Batteries
Q. Guo, Y. Ma, T. Chen, Q. Xia, M. Yang, H. Xia*, and Y. Yu* ACS Nano, 2017, 11,12658-12667.

130. High Energy and High Power Lithium-Ion Capacitors Based on Boron and Nitrogen Dual-Doped 3D Carbon Nanofibers as Both Cathode and Anode
Q. Xia, H. Yang, M. Wang, M. Yang, Q. Guo, L. Wan, H. Xia*, and Y. Yu*, Advanced Energy Materials, 2017, 7, 1701336.

129. 2D Sandwich-like Nanosheets of Ultrafine Sb Nanoparticles Anchored to Graphene for High-Efficiency Sodium Storage
X. Liu, M. Gao, H. Yang, X. Zhong, and Y. Yu*, Nano Research, 2017, 10, 4360-4367.

128. Superior Sodium Storage in Phosphorus@Porous Multichannel Flexible Freestanding Carbon Nanofibers
X. Sun, W. Li, X. Zhong, and Y. Yu*, Energy Storage Materials, 2017, 9, 112-118.

127. Na3V2(PO4)3 Coated by N-Doped Carbon from Ionic Liquid as Cathode Materials for High Rate and Long-life Na-ion Batteries
Y. Yao, Y. Jiang, H. Yang, X. Sun, and Y. Yu*,Nanoscale , 2017, 9, 10880-10885.

126. Enhanced sodium storage performance in flexible free-standing multichannel carbon nanofibers with enlarged interlayer spacing
B. Yuan,L. Zeng, X. Sun, Y. Yu* and Q. Wang*,Nano Research, 2017, 11, 2256-2264.

125. Challenge and Perspective of NASICON-Type Electrode Materials for Advanced Sodium-Ion Batteries
S. Chen, C. Wu, L. Shen, C. Zhu, Y. Huang, K. Xi, J. Maier and Y. Yu*,Advanced Materials, 2017, 29, 201700431.

124. A Novel Hybrid Artificial Photosynthesis System Using MoS2 Embedded in Carbon Nanofibers as Electron Relay and Hydrogen Evolution Catalyst
F.-J. Niu, C.-L. Dong, C. Zhu, Y.-C. Huang, M. Wang, J. Maier, Y. Yu* and S.-H. Shen* ,Journal of Catalysis, 2017, 352, 35-41.

123. Carbon-Coated Li3VO4 Spheres as Constituents of an Advanced Anode Material for a High-Rate Long-Life Lithium-Ion Battery
L. Shen, S.Chen, J. Maier and Y. Yu*,Advanced Materials, 2017, 29, 201701571.

122. Peapod-like Li3VO4/N-Doped Carbon Nanowires with Pseudocapacitive Properties as Advanced Materials for High-Energy Lithium-Ion Capacitors
L. Shen, S. Chen, P. Kopold, P. A. van Aken, J. Maier, and Y. Yu*,Advanced Materials, 2017, 29, 201700142.

121. Multichannel Porous TiO2 Hollow Nanofibers with Rich Oxygen Vacancies and High Grain Boundary Density Enabling Superior Sodium Storage Performance
Y. Wu, Y. Jiang, J. ShI, L. Gu and Y. Yu*,Small, 2017, 13, 1700129.

120. Binding S0.6Se0.4 in 1D Carbon Nanofiber with C - S Bonding for High-Performance Flexible Li–S Batteries and Na–S Batteries
Y. Yao, L. Zeng,Shuhe Hu, Y. Jiang, B. Yuan, and Y. Yu*,Small, 2017, 13, 1603513.

119. Confined Amorphous Red Phosphorus in MOF-Derived N-Doped Microporous Carbon as a Superior Anode for Sodium-Ion Battery
W. Li, S. Hu, X. Luo, Z. Li, X. Sun, M. Li, F. Liu, and Y. Yu* ,Advanced Materials, 2017, 29, 1605820.

118. New Nanoconfined Galvanic Replacement Synthesis of Hollow Sb@C Yolk–Shell Spheres Constituting a Stable Anode for High-Rate Li/Na-Ion Batteries
J. Liu, L. Yu, C. Wu, Y. Wen, K. Yin, F. Chiang, R. Hu, J. Liu, . Sun, L. Gu, J. Maier, Y. Yu* , and M. Zhu*, Nano Letters , 2017, pp 1–26

117. Dual-Functionalized Double Carbon Shells Coated Silicon Nanoparticles for High Performance Lithium-Ion Batteries
S. Chen, L. Shen, P. A. van Aken, J. Maier, and Y. Yu* ,Advanced Materials , 2017, 29, 1605650.

116. Recent progress in Li–S and Li–Se batteries
L. Zeng,W. Li,Y. Jiang, and Y. Yu* ,Rare Metals , 2017, 36, 339-364.

115. High Performance Graphene/Ni2P Hybrid Anodes for Lithium and Sodium Storage through 3D Yolk-Shell-Like Nanostructural Design
C. Wu, P. Kopold, P. A. van Aken, J. Maier, and Y. Yu*,Advanced Materials, 2017, 29, 1604015.

114. Highly Reversible and Durable Na Storage in Niobium Pentoxide through Optimizing Structure, Composition, and Nanoarchitecture
J. Ni, W. Wang, C.Wu, H. Liang, J. Maier, Y. Yu* and L. Li*,Advanced Materials, 2017, 29, 1605607.

113. Germanium Encapsulated in Sulfur and Nitrogen Co-doped 3D Porous Carbon as Ultra-Long-Cycle Life Anode for Lithium Ion Batteries
C. Yang, Y. Jiang, X. Liu, X. Zhong, and Y. Yu*,Journal of Materials Chemistry A, 2016, 4, 18711 - 18716.

112. Carbon-Coated Na3V2(PO4)3 Anchored on Freestanding Graphite Foam for High-Performance Sodium-Ion Cathodes
X. Zhong, Z. Yang, Y. Jiang, W. Li, L. Gu, and Y. Yu*,ACS Applied Materials & Interfaces, 2016, 8, 32360–32365.

111. Highly Reversible and Ultrafast Sodium Storage in NaTi2(PO4)3 Nanoparticles Embedded in Nanocarbon Networks
Y. Jiang, J. Shi, M. Wang, L. Zeng, L. Gu, and Y. Yu*,ACS Applied Materials & Interfaces, 2016, 8, 689–695.

110. One-Dimensional Na3V2(PO4)3/C Nanowires as Cathode Materials for Long-Life and High Rate Na-Ion Batteries
Y. Jiang, Y. Yao, J. Shi, L. Zeng, L. Gu, and Y. Yu*,ChemNanoMat, 2016, 2, 726–731.


(This work has recently been highlighted at MaterialsViews: http://www.materialsviews.com/porous-nanowires-high-rate-sodium-ion-batteries/)


109. A Flexible S1−xSex@Porous Carbon NanoFibers (x≤0.1) Thin Film with High Performance for Li-S Batteries and Room-Temperature Na-S Batteries
L. Zeng, Y. Yao, J. Shi, Y. Jiang, W. Li, L. Gu, and Y. Yu*,Energy Storage Materials, 2016, 5, 50-57.

108. Nitrogen-Doped Ordered Mesoporous Anatase TiO2 Nanofibers as Anode Materials for High Performance Sodium-Ion Batteries
Y. Wu, X. Liu, Z. Yang, L. Gu and Y. Yu*,Small, 2016, 12, 3522–3529.

107. Nanostructured electrode materials for lithium-ion and sodium-ion batteries via electrospinning
W. Li, C. Zeng, Y. Wu and Y. Yu*,Science China Materials, 2016, 59, 287-321.

106. Peapod-Like Carbon-Encapsulated Cobalt Chalcogenide Nanowires as Cycle-Stable and High-Rate Materials for Sodium-Ion Anodes
C. Wu, Y. Jiang, P. Kopold, P. A. van Aken, J. Maier and Y. Yu*,Advanced Materials, 2016, 28, 7276–7283.

105. Lamellar Hybrid Assembled from Metal Disulfide Nanowall Arrays Anchored on Carbon Layer: In-Situ Hybridization and Improved Sodium Storage
Y. Ding, P. Kopold, K. Hahn, P. A. van Aken, J. Maier and Y. Yu*,Advanced Materials, 2016, 28, 7774–7782.

104. Amorphous Red Phosphorus Embedded in Highly Ordered Mesoporous Carbon with Superior Lithium and Sodium Storage Capacity
W. Li, Z. Yang, M. Li, Y. Jiang, X. Wei, X. Zhong, L. Gu and Y. Yu*,Nano Letters, 2016, 16, 1546–1553.

103. Superior Sodium Storage in Na2Ti3O7 Nanotube Arrays through Surface Engineering
J. Ni, S. Fu, C. Wu, Y. Zhao, J. Maier, Y. Yu* and L. Li*,Advanced Energy Materials, 2015, 6, 1502568.

102. Superior Sodium Storage in Three-Dimensional Interconnected Nitrogen and Oxygen Dual-Doped Carbon Network
M. Wang, Z. Yang, W. Li, L. Gu, and Y. Yu*,Small, 2016, 12, 2559-2566.

101. MOF-Derived Hollow Co9S8 Nanoparticles Embedded in Graphitic Carbon Nanocages with Superior Li-Ion Storage
J. Liu, C. Wu, D. Xiao, P. Kopold, L. Gu, P. A. van Aken, J. Maier and Y. Yu*,Small, 2016, 12, 2354–2364.

(This work has recently been highlighted at MaterialsViewsChina : http://www.materialsviewschina.com/2016/05/graphitized-carbon-nanocages-derived-mof-encapsulates-co9s8-hollow-particles-with-excellent-lithium-ion-storage-performance)

100. Influence of Carbon Matrix Dimensions on the Electrochemical Performance of Germanium Oxide in Lithium-Ion Batteries
X. Wei, W. Li, L. Zeng and Y. Yu*,Particle and Particle Systems Characterization, 2016, 33, 524–530.

99. High Power-High Energy Sodium Battery Based on Threefold Interpenetrating Network
C. Zhu, P. Kopold, P. A. van Aken, J. Maier and Y. Yu*,Advanced Materials, 2015, 28, 2409–2416

(This work has recently been highlighted at Nature : http://www.nature.com/nature/journal/v530/n7589/full/530133c.html)

98. Self-Supported Nanotube Array of Sulfur-Doped TiO2 Enabling Ultrastable and Robust Sodium Storage
J. Ni, S. Fu, C. Wu, J. Maier, Y. Yu* and L. Li*,Advanced Materials, 2016, 11, 2259–2265.

97. Facile Solid-State Growth of 3D Well-Interconnected Nitrogen-Rich Carbon Nanotube Graphene Hybrid Architectures for Lithium-Sulfur Batteries
Y. Ding, P. Kopold, K. Hahn, P. A. van Aken, J. Maier and Y. Yu*,Advanced Functional Materials, 2016, 26, 1112–1119.

(This work has recently been highlighted at MaterialsViewsChina : http://www.materialsviewschina.com/2016/02/cathode-materials-for-lithium-sulfur-batteries-three-dimensional-structure-of-nitrogen-doped-carbon-nanotubes-graphene-hybrid/)

96. FeS@C on Carbon Cloth as Flexible Electrode for Both Lithium and Sodium Storage
X. Wei, W. Li, J. Shi, L. Gu, Y. Yu*,ACS Applied Materials & Interfaces, 2015, 7, 27804–27809.

95. Nanoconfined Antimony in Sulphur and Nitrogen Co-doped Three-Dimensionally (3D) Interconnected Macroporous Carbon for High-Performance Sodium-Ion Batteries
C. Yang, W. Li, Z. Yang, L. Gu and Y. Yu*,Nano Energy, 2015, 18, 12-19.

94. MoS2–graphene Nanosheet–CNT Hybrids with Excellent Electrochemical Performances for Lithium-Ion Batteries
F. Pan, J. Wang, Z. Yang, L. Gu and Y. Yu*,RSC Advances, 2015, 5, 77518-77526.

93. Sb Nanoparticles Encapsulated in a Reticular Amorphous Carbon Network for Enhanced Sodium Storage
M. Wang, Z. Yang, J. Wang, W. Li, L. Gu and Y. Yu*,Small, 11, 5381–53873.

92. General Strategy for Fabricating Sandwich-like Graphene-Based Hybrid Films for Highly Reversible Lithium Storage
X. Zhong, Z. Yang, X. Liu, J. Wang, L. Gu, and Y. Yu*,ACS Applied Materials & Interfaces, 2015, 7 (33), 18320–18326.

91. Carbon Coated NASICON Structure Material Embedded in Porous Carbon Enabling Superior Sodium Storage Performance: NaTi2(PO4)3 as An Example
Y. Jiang, L. Zeng, J. Wang, W. Li, F. Pan and Y. Yu*,Nanoscale, 2015, 7, 14723-14729.

90. In situ Reduction and Coating of SnS2 Nanobelts for Free-standing SnS@polypyrrole-nanobelt/carbonnanotube Paper Electrodes with Superior Li-Ion Storage
J. Liu , Y. Wen, P. A. van Aken, J. Maier and Y. Yu*,Journal of Materials Chemistry A, 2015, 3, 5259-5265.

89. Nanosheets of Earth-Abundant Jarosite as Novel Anodes for HighRate and Long-Life Lithium-Ion Batteries
Y. Ding, Y. Wen, C. Chen, P. A. van Aken, J. Maier and Y. Yu*,ACS Applied Materials & Interfaces, 2015, 7 (19), 10518–10524.

898. Graphene-Protected 3D Sb-based Anodes Fabricated via Electrostatic Assembly and Confinement Replacement for Enhanced Lithium and Sodium Storage
Y. Ding, C. Wu, P. Kopold, P. A. van Aken, J. Maier and Y. Yu*,Small, 2016, 11, 6026–6035.

87. Three-dimensionally Interconnected Nickel–Antimony Intermetallic Hollow Nanospheres as Anode Material for High-rate Sodium-ion Batteries
J. Liu, Z. Yang, J. Wang, L. Gu, J. Maier and Y. Yu*,Nano Energy, 2015, 16, 389–398.

876. Generalizable Synthesis of Metal-Sulfides/Carbon Hybrids with Multiscale, Hierarchically Ordered Structures as Advanced Electrodes for Lithium Storage
C. Wu, J. Maier and Y. Yu*,Advanced Materials, 2016, 28, 174-180.

85. Jarosite Nanosheets Fabricated via Room-Temperature Synthesis as Cathode Materials for High-Rate Lithium Ion Batteries
Y, Ding, Y, Wen, P. A. van Aken, J. Maier and Y. Yu*,Chemistry of Materials, 2015, 27 (8), 3143–3149.

84. An Advanced Sodium-Ion Battery Composed of Carbon Coated Na3V2(PO 4 )3 in a Porous Graphene Network
X. Rui, W. Sun, C. Wu, Y. Yu* and Q. Yan*,Advanced Materials, 2015, 27, 6670–6676.

83. Uniform Yolk-Shell Sn4P3@C Nanospheres as High-Capacity and Cycle-Stable Anode Materials for Sodium-Ion Batteries
J. Liu, C. Wu, P. Kopold, P. A. van Aken, J. Maier and Y. Yu*,Energy & Environmental Science, 2015, 8, 3531-3538.

82. Engineering Nanostructured Electrode Materials for High Performance Sodium Ion Batteries: Case Study of 3D Porous Interconnected WS2/C Nanocomposite
C. Zhu, P. Kopold, P. A. van Aken, J. Maier and W. Li and Y. Yu*,Journal of Materials Chemistry A, 2015, 3, 20487-20493.

81. A General Strategy to Fabricate Carbon-Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for High-Performance Lithium and Sodium Ion Batteries
C. Zhu, P. Kopold, W. Li, P. A. van Aken, J. Maier and Y. Yu*,Advanced Science, 2015, 2, 1500200.

(This work has recently been highlighted at MaterialsViewsChina)

80. High Lithium Storage Performance of FeS Nanodots in Porous Graphitic Carbon Nanowires
C. Zhu, Y. Wen, P. A. van Aken, J. Maier, Y. Yu*,Advanced Functional Materials, 2015, 25, 2335-2342.

79. Sn-Based Nanoparticles Encapsulated in a Porous 3D Graphene Network: Advanced Anodes for High-Rate and Long Life Li-Ion Batteries
C. Wu, J. Maier, Y. Yu*,Advanced Functional Materials, 2015, 25, 3488-3496.

78. Synthesizing Porous NaTi2(PO4)3 Nanoparticles Embedded in 3D Graphene Networks for High-Rate and Long Cycle-Life Sodium Electrodes
C. Wu, P. Kopold, Y. L. Ding, P. A. van Aken, J. Maier, Y. Yu*,ACS Nano, 2015,9,6610-6618.

77. Free-standing graphene-based porous carbon films with three-dimensional hierarchical architecture for advanced flexible Li–sulfur batteries
C. Wu, L. Fu, J. Maier, Y. Yu*,Journal of Materials Chemistry A, 2015, 3, 9438-9445.

76. Rapid and Up-Scalable Fabrication of Free-Standing Metal Oxide Nanosheets for High-Performance Lithium Storage
Y. L. Ding, Y. Wen, P. A. van Aken, J. Maier, Y. Yu*,Small, 2015, 11, 2011-2018.

75. Nanosheets of Earth-Abundant Jarosite as Novel Anodes for High-Rate and Long-Life Lithium-Ion Batteries
Y. L. Ding, Y. Wen, C. C. Chen, P. A. van Aken, J. Maier, Y. Yu*,ACS applied materials & interfaces, 2015, 7, 10518–10524.

74. Phosphorus-doped porous carbon derived from rice husk as anode for lithium ion batteries
J. Wang, Z. Yang, F. Pan, X. Zhong, X. Liu, L. Gu, Y. Yu*,RSC Advances, 2015, 5, 55136-55142.

73. Nitrogen-doped 3D macroporous graphene frameworks as anode for high performance lithium-ion batteries
X. Liu, Y. Wu, Z. Yang, F. Pan, X. Zhong, J. Wang, L. Gu, Y. Yu*,Journal of Power Sources, 2015, 293, 799-805.

72. Electrospinning with partially carbonization in air: Highly porous carbon nanofibers optimized for high-performance flexible lithium-ion batteries
W. Li, M. Li, M. Wang, L. Zeng, Y. Yu*,Nano Energy, 2015, 13, 693-701.

71. Three-Dimensionally Interconnected TaS3 Nanowire Network as Anode for High-Performance Flexible Li-Ion Battery
W. Li, L. Yang, J. Wang, B. Xiang*, Y. Yu*,ACS applied materials & interfaces, 2015, 7, 5629-5633.

70. Flexible copper-stabilized sulfur–carbon nanofibers with excellent electrochemical performance for Li–S batteries
L. Zeng, Y. Jiang, J. Xu, M. Wang, W. Li, Y. Yu*,Nanoscale, 2015, 7, 10940-10949.

69. Energy Storage Materials from Nature through Nanotechnology: A Sustainable Route from Reed Plants to a Silicon Anode for Lithium-Ion Batteries
J. Liu, P. Kopold, P. A. van Aken, J. Maier, Y. Yu*, Angewandte Chemie - International Edition. 2015, 54, 9632–9636.

(This work has been highlighted at Angew. Chem. Int. Ed : http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1521-3773/homepage/press/201528press.html)

68. Flexible one-dimensional carbon–selenium composite nanofibers with superior electrochemical performance for Li–Se/Na–Se batteries
L. Zeng, X. Wei, J. Wang, Y. Jiang, W. Li, Y. Yu*, 2015, Journal of Power Sources,2015,281,461–469.

67. Nanoconfined Carbon-Coated Na3V2(PO4)3 Particles in Mesoporous Carbon Enabling Ultralong Cycle Life for Sodium-Ion Batteries
Y. Jiang, Z. Yang, W. Li, L. Zeng, F. Pan, M. Wang, X. Wei, G. Hu, L. Gu and Y. Yu*, 2015, Advanced Energy Materials, 2015, 5, 1402104.

(This work has recently been highlighted at MaterialsViewsChina : http://www.materialsviewschina.com/2016/02/cathode-materials-for-lithium-sulfur-batteries-three-dimensional-structure-of-nitrogen-doped-carbon-nanotubes-graphene-hybrid/)

66. Carbon-Coated Germanium Nanowires on Carbon Nanofibers as Self-Supported Electrodes for Flexible Lithium-Ion Batteries
W. Li, M. Li, Z. Yang, J. Xu, X. Zhong, J. Wang, L. Zeng, X. Liu, Y. Jiang, X. Wei, L. Gu and Y. Yu*, 2014, Small, 2015,11,2762-2767.

65. V6O13 Nanotextiles Assembled from Interconnected Nanogrooves as Cathode Materials for High-Energy Lithium Ion Batteries
Y.-L. Ding, Y-. Wen, C. Wu, P. A. van Aken, J Maier, and Y. Yu*, Nano Letters, 2015, 15 (2), 1388–1394.

64. In situ reduction and coating of SnS2 nanobelts for free-standing SnS@polypyrrole-nanobelt/carbon-nanotube paper electrodes with superior Li-ion storage
J. Liu, Y.-R. Wen, P. A. van Aken, J. Maier, and Y. Yu*, Journal of Materials Chemistry A 3(10), 5259–5265 (2015).

63. Gram-Scale Synthesis of Graphene-Mesoporous SnO2 Composite as Anode for Lithium-ion Batteries
X. Liu, X. Zhong, Z. Yang, F. Pan, L. Gu and Y. Yu*, 2014, Electrochimica Acta,2015,152,178-186.

62. Facile synthesis of highly porous Ni-Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium storage
J. Liu, Y. Wen, P. A. van Aken, J. Maier and Y. Yu*, Nano letters, 2014 , 14 (11), pp 6387–6392.

61. Facile synthesis of germanium–reduced graphene oxide composite as anode for high performance lithium-ion batteries
X. Zhong, J. Wang, W. Li, X. Liu, Z. Yang, L. Gu and Y. Yu*, RSC Advances, 2014, 4, 58184-58189.

60. Nitridation Br-doped Li4Ti5O12 anode for high rate lithium ion batteries
J. Wang, Z. Yang, W. Li, X. Zhong, L. Gu, Y. Yu*, Journal of Power Sources, 2014, 266, 323-331.

59. Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries
W. Li, Z. Yang, Y. Jiang, Z. Yu, L. Gu and Y. Yu*, Carbon, 2014, 78, 455-462.

58. A Flexible Porous Carbon Nanofibers‐Selenium Cathode with Superior Electrochemical Performance for Both Li‐Se and Na‐Se Batteries
L. Zeng, W. Zeng, Y. Jiang, X. Wei, W. Li, C. Yang, Y. Zhu* and Y. Yu*, Advanced Energy Materials, 2015, 5, 1401377.

(This work has recently been highlighted at MaterialsViewsChina : http://www.materialsviewschina.com/2016/02/cathode-materials-for-lithium-sulfur-batteries-three-dimensional-structure-of-nitrogen-doped-carbon-nanotubes-graphene-hybrid/)

57. Fast Li Storage in MoS2‐Graphene‐Carbon Nanotube Nanocomposites: Advantageous Functional Integration of 0D, 1D, and 2D Nanostructures
C. Zhu, X. Mu, P. A. van Aken, J. Maier and Y. Yu*, Advanced Energy Materials, 2015, 5, 1401170.

56. Lithium potential variations for metastable materials: case study of nanocrystalline and amorphous LiFePO4
C. Zhu, X. Mu, J. Popovic, K. Weichert, P. A. van Aken, Y. Yu* and J. Maier, Nano letters, 2014, 14, 5342-5349.

55. Carbon‐Encapsulated Pyrite as Stable and Earth‐Abundant High Energy Cathode Material for Rechargeable Lithium Batteries
J. Liu, Y. Wen, Y. Wang, P. A. van Aken, J. Maier and Y. Yu*, Advanced Materials., 2014, 26, 6025-6030.

54. Direct evidence of a conversion mechanism in a NiSnO3 anode for lithium ion battery application
L. Fu, K. Song, X. Li, P. A. van Aken, C. Wang, J. Maier and Y. Yu*, RSC Advances, 2014, 4,36301-36306.

53. Large-scale low temperature fabrication of SnO2 hollow/nanoporous nanostructures: the template-engaged replacement reaction mechanism and high-rate lithium storage
Y.-L. Ding, Y. Wen, P. A. Van Aken, J. Maier and Y. Yu*, Nanoscale, 2014, 6, 11411-11418.

52. Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage
C. Zhu, X. Mu, P. A. Vanaken, Y. Yu* and J. Maier*, Angewandte Chemie - International Edition, 2014, 53, 2152-2156.

51. Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: An ultrafast Na-storage cathode with the potential of outperforming Li cathodes
C. Zhu, K. Song, P. A. Van Aken, J. Maier and Y. Yu*, Nano Letters, 2014, 14, 2175-2180.

50. Ge/C Nanowires as High-Capacity and Long-Life Anode Materials for Li-Ion Batteries
J. Liu, K. P. Song, C. Zhu, C.-C. Chen, P. A. van Aken, Y. Yu*, and J. Maier , ACS Nano,2014, 8 (7), pp 7051–7059.

49. Self-supported Li4Ti5O12@C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries
J. Liu, K. Song, P. A. Van Aken, J. Maier and Y. Yu*, Nano Letters, 2014, 14 (5), 2597–2603.

48. Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries
J. Liu, K. Tang, K. P. Song, P. A. van Aken, Y. Yu* and J. Maier, Nanoscale, 2014,6, 5081-5086.

47. Superior lithium storage in a 3D macroporous graphene framework/SnO2 nanocomposite
X. Liu, J. Cheng, W. Li, X. Zhong, Z. Yang, L. Gu and Y. Yu*, Nanoscale, 2014, 6, 7817-7822.

46. Free-standing porous carbon nanofibers/CNT hybrid for flexible Li-S battery cathode
L. Zeng, F. Pan, W. Li, Y. Jiang, X. Zhong and Y. Yu*, Nanoscale, 2014, 6, 9579-9587.

45. Germanium nanoparticles encapsulated in flexible carbon nanofibers as self-supported electrodes for high performance lithium-ion batteries
W. Li, Z. Yang, J. Cheng, X. Zhong, L. Gu and Y. Yu*, Nanoscale, 2014, 6, 4532-4537.

44. Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance
L. Fu, K. Tang, K. Song, P. A. Van Aken, Y. Yu* and J. Maier, Nanoscale, 2014, 6, 1384-1389.

43. N-doped porous hollow carbon nanofibers fabricated using electrospun polymer templates and their sodium storage properties
L. Zeng, W. Li, J. Cheng, J. Wang, X. Liu and Y. Yu*, RSC Advance, 2014,4, 16920-16927.

42. Three-dimensional (3D) bicontinuous au/amorphous-Ge thin films as fast and high-capacity anodes for lithium-ion batteries
Y. Yu*, C. Yan*, L. Gu*, X. Lang, K. Tang, L. Zhang, Y. Hou, Z. Wang, M. W. Chen, O. G. Schmidt and J. Maier, Advanced Energy Materials, 2013, 3, 281-285.

41. “Nano-pearl-string” TiNb2O7 as anodes for rechargeable lithium batteries
K. Tang, X. Mu, P. A. Van Aken, Y. Yu and J. Maier*, Advanced Energy Materials, 2013, 3, 49-53.

40. Highly reversible lithium storage in Si (core)-hollow carbon nanofibers (sheath) nanocomposites
J. Wang, Y. Yu*, L. Gu*, C. Wang, K. Tang and J. Maier, Nanoscale, 2013, 5, 2647-2650.

39. Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers
W. Li, L. Zeng, Z. Yang, L. Gu, J. Wang, X. Liu, J. Cheng and Y. Yu*, Nanoscale, 2014, 6, 693-698.

38. Free-standing Ag/C coaxial hybrid electrodes as anodes for Li-ion batteries
L. Fu*, K. Tang, C. C. Chen, L. Liu, X. Guo, Y. Yu* and J. Maier, Nanoscale, 2013, 5, 11568-11571.

37. Synthesis and electrochemical properties of high performance yolk-structured LiMn2O4 microspheres for lithium ion batteries
Y. Qiao, S. R. Li, Y. Yu and C. H. Chen*, Journal of Materials Chemistry A, 2013, 1, 860-867.

36. Walnut-like vanadium oxide film with high rate performance as a cathode material for rechargeable lithium batteries
Y. Sun, L. Zhang, S. Wang, I. Lieberwirth, Y. Yu and C. Chen*, Journal of Power Sources, 2013, 228, 7-13.

35. Tiny Li4Ti5O12 nanoparticles embedded in carbon nanofibers as high-capacity and long-life anode materials for both Li-ion and Na-ion batteries
J. Liu, K. Tang, K. Song, P. A. Van Aken, Y. Yu* and J. Maier, Physical Chemistry Chemical Physics, 2013, 15, 20813-20818.

34. Solid-state synthesis and electrochemical performance of Li4Ti5O12/graphene composite for lithium-ion batteries
X. Guo, H. F. Xiang, T. P. Zhou, W. H. Li, X. W. Wang, J. X. Zhou and Y. Yu*, Electrochimica Acta, 2013, 109, 33-38.

33. Multichannel hollow TiO2 nanofibers fabricated by single-nozzle electrospinning and their application for fast lithium storage
K. Tang, Y. Yu*, X. Mu, P. A. Van Aken and J. Maier*, Electrochemistry Communications, 2013, 28, 54-57.

32. Hydrothermal synthesis of plate-like carbon-coated Li3V 2(PO4)3 and its low temperature performance for high power lithium ion batteries
F. Teng, Z. H. Hu, X. H. Ma, L. C. Zhang, C. X. Ding, Y. Yu and C. H. Chen*, Electrochimica Acta, 2013, 91, 43-49.

31. Facile synthesis of flower-like and yarn-like α-Fe2O3 spherical clusters as anode materials for lithium-ion batteries
X. H. Ma, X. Y. Feng, C. Song, B. K. Zou, C. X. Ding, Y. Yu and C. H. Chen*, Electrochimica Acta, 2013, 93, 131-136.

30. Phase transformation and lithiation effect on electronic structure of Li xFePO 4: An in-depth study by soft X-ray and simulations
X. Liu, J. Liu, R. Qiao, Y. Yu, H. Li, L. Suo, Y. S. Hu, Y. D. Chuang, G. Shu, F. Chou, T. C. Weng, D. Nordlund, D. Sokaras, Y. J. Wang, H. Lin, B. Barbiellini, A. Bansil, X. Song, Z. Liu, S. Yan, G. Liu, S. Qiao, T. J. Richardson, D. Prendergast, Z. Hussain, F. M. F. De Groot and W. Yang, Journal of the American Chemical Society, 2012, 134, 13708-13715.

29. Hierarchically macroporous and mesoporous sponge-like Fe3O4 thin film electrodes for application in li-ion batteries
Y. Yu, A. Dhanabalan, L. Gu and C. Wang, Nanoscience and Nanotechnology Letters, 2012, 4, 983-988.

28. Graphene sheets as anode materials for Li-ion batteries: Preparation, structure, electrochemical properties and mechanism for lithium storage
H. F. Xiang, Z. D. Li, K. Xie, J. Z. Jiang, J. J. Chen, P. C. Lian, J. S. Wu, Y. Yu and H. H. Wang*, RSC Advances, 2012, 2, 6792-6799.

27. Facile synthesis of micrometer Li1.05Mn1.95O4 and its low temperature performance for high power lithium ion batteries
S. R. Li, Y. Qiao, Y. Sun, S. Y. Ge, Y. M. Chen, I. Lieberwirth, Y. Yu and C. H. Chen*, Electrochimica Acta, 2012, 81, 191-196.

26. A review on lithium-ion batteries safety issues: Existing problems and possible solutions
J. Wen, Y. Yu and C. Chen, Materials Express, 2012, 2, 197-212.

25. A facile route to synthesize nano-MnO/C composites and their application in lithium ion batteries
S. R. Li, Y. Sun, S. Y. Ge, Y. Qiao, Y. M. Chen, I. Lieberwirth, Y. Yu and C. H. Chen*, Chemical Engineering Journal, 2012, 192, 226-231.

24. Electrostatic spray deposition of nanoporous CoO/Co composite thin films as anode materials for lithium-ion batteries
Y. Sun, C. Du, X. Y. Feng, Y. Yu, I. Lieberwirth and C. H. Chen, Applied Surface Science, 2012, 259, 769-773.

23. Li storage in 3D nanoporous au-supported nanocrystalline tin
Y. Yu*, L. Gu*, X. Lang*, C. Zhu, T. Fujita, M. Chen and J. Maier, Advanced Materials, 2011, 23, 2443-2447.

22. Electrospinning of highly electroactive carbon-coated single-crystalline LiFePO4 nanowires
C. Zhu, Y. Yu*, L. Gu*, K. Weichert and J. Maier, Angewandte Chemie - International Edition, 2011, 50, 6278-6282.

21. Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution
L. Gu, C. Zhu, H. Li, Y. Yu, C. Li, S. Tsukimoto, J. Maier and Y. Ikuhara, Journal of the American Chemical Society, 2011, 133, 4661-4663.

20. Direct imaging of lithium ions using aberration-corrected annular-bright-field scanning transmission electron microscopy and Associated contrast Mechanisms
X. He, L. Gu*, C. Zhu, Y. Yu, C. Li, Y. S. Hu, H. Li, S. Tsukimoto, J. Maier, Y. Ikuhara and X. Duan, Materials Express, 2011, 1, 43-50.

2010-2005

19. A tin-based amorphous oxide composite with a porous, spherical, multideck-cage morphology as a highly reversible anode material for lithium-ion batteries
Y. Yu, C. H. Chen* and Y. Shi, Advanced Materials, 2007, 19, 993-997.

18. Tin nanoparticles encapsulated in porous multichannel carbon microtubes: Preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries
Y. Yu*, L. Gu*, C. Zhu, P. A. Van Aken and J. Maier, Journal of the American Chemical Society, 2009, 131, 15984-15985.

17. Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries
Y. Yu*, L. Gu*, C. Wang, A. Dhanabalan, P. A. Van Aken and J. Maier, Angewandte Chemie - International Edition, 2009, 48, 6485-6489.

16. Reversible storage of lithium in silver-coated three-dimensional macroporous silicon
Y. Yu*, L. Gu*, C. Zhu, S. Tsukimoto, P. A. Van Aken and J. Maier, Advanced Materials, 2010, 22, 2247-2250.

15. Nickel-foam-supported reticular CoO-Li2O composite anode materials for lithium ion batteries
Y. Yu, C. H. Chen*, J. L. Shui and S. Xie, Angewandte Chemie - International Edition, 2005, 44, 7085-7089.

14. Synthesis and characterization of N-rich single crystalline SiOxNy nanowires with three-dimensional branches
L. Gu, Y. Yu*, V. Penmatsa, C. Wang, J. Maier and P. A. Van Aken, Applied Physics Letters, 2009, 94.

13. Direct bandgap measurements in a three-dimensionally macroporous silicon 9R polytype using monochromated transmission electron microscope
L. Gu*, Y. Yu*, W. Sigle, N. Usami, S. Tsukimoto, J. Maier, Y. Ikuhara and P. A. Van Aken, Applied Physics Letters, 2010, 97.

12. LiCoPO4-based ternary composite thin-film electrode for lithium secondary battery
J. L. Shui, Y. Yu, X. F. Yang and C. H. Chen*, Electrochemistry Communications, 2006, 8, 1087-1091.

11. Electrochemical performance of nano-SiO2 modified LiCoO2 thin films fabricated by electrostatic spray deposition (ESD)
Y. Yu, J. L. Shui, Y. Jin and C. H. Chen*, Electrochimica Acta, 2006, 51, 3292-3296.

10. Effect of lithia and substrate on the electrochemical performance of a lithia/cobalt oxide composite thin-film anode
Y. Yu, Y. Shi and C. H. Chen*, Chemistry - An Asian Journal, 2006, 1, 826-831.

9. Deposition conditions in tailoring the morphology of highly porous reticular films prepared by electrostatic spray deposition (ESD) technique
J. L. Shui, Y. Yu and C. H. Chen*, Applied Surface Science, 2006, 253, 2379-2385.

8. Nanoporous cuprous oxide/lithia composite anode with capacity increasing characteristic and high rate capability
Y. Yu, Y. Shi and C. H. Chen*, Nanotechnology, 2007, 18.

7. Electrostatic spray assembly of nanostructured La0.7Ca0.3CrO3-delta films
Y. Jiang, Y. Yu, W. Sun, C. H. Chen*, G. Meng and J. Gao, Journal of the Electrochemical Society, 2007, 154,E107-E111.

6. Facile electrochemical synthesis of single-crystalline copper nanospheres, pyramids, and truncated pyramidal nanoparticles. from lithia/cuprous oxide composite thin films
Y. Yu, Y. Shi, C. H. Chen* and C. Wang, Journal of Physical Chemistry C, 2008, 112, 4176-4179.

5. Electrospun carbon-cobalt composite nanofiber as an anode material for lithium ion batteries
L. Wang, Y. Yu, P. C. Chen and C. H. Chen*, Scripta Materialia, 2008, 58, 405-408.

4. Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries
L. Wang, Y. Yu, P. C. Chen, D. W. Zhang and C. H. Chen*, Journal of Power Sources, 2008, 183, 717-723.

3. Three-dimensional porous amorphous SnO2 thin films as anodes for Li-ion batteries
Y. Yu, L. Gu, A. Dhanabalan, C. H. Chen and C. Wang*, Electrochimica Acta, 2009, 54, 7227-7230.

2. Some new facts on electrochemical reaction mechanism for transition metal oxide electrodes
C. Chen*, N. Ding, L. Wang, Y. Yu and I. Lieberwirth, Journal of Power Sources, 2009, 189, 552-556.

1. Porous SnO2/CNT composite anodes: Influence of composition and deposition temperature on the electrochemical performance
A. Dhanabalan, Y. Yu, X. Li, W. Chen, K. Bechtold, L. Gu and C. Wang*, Journal of Materials Research, 2010, 25, 1554-1560.

may 9, 2023

Research Goes A Long Way