Posts Time evolution of 1D Gaussian Wavepacket in Free Space
Post
Cancel

Time evolution of 1D Gaussian Wavepacket in Free Space

Introduction

Consider a 1D free particle which is described at t=0 by the normalized Gaussian wavefunction

(1)ψ(x,t=0)=[1πσ2]1/4ex2/2σ2eik0x

How does this wavefunction evolve under the free space Hamiltonian?

(2)H=22m2

To this end, one can first perform Fourier transform, i.e.

(3)ψ(x,0)=12πu(k)eikxdku(k)=12πψ(x,0)eikxdx

Remember that the plain-waves eikx are the eigenfunctions of Eq.(2), therefore one can readily write down the time evolution of the 1D wavepacket as

(4)ψ(x,t)=12πu(k)eikxeiωktdk

where ϵk is the energy of the plain-wave:

(5)ϵk=2k22m=ωk

Fourier transform of Gaussian wavepacket

The Fourier transform of the Gaussian wavepacket writes

(6)u(k)=12πψ(x,0)eikxdx(7)=12π[1πσ2]1/4ex2/2σ2eik0xeikxdx(8)=[14π3σ2]1/42πσ2exp[σ2(kk0)22](9)=[σ2π]1/4exp[σ2(kk0)22]

where we have used the Gaussian integral listed in the appendix with

(10)a=12σ2(11)b=i[kk0]x

Time evolution of Gaussian wavepacket

Now, substituting Eq.(9) back into Eq.(4), one has

(12)ψ(x,t)=12πu(k)eikxeiωktdk(13)=12π[σ2π]1/4eσ2(kk0)2/2eikxeiωktdk(14)=[σ24π3]1/4πσ2/2+it2mexp[(ix+σ2k0)22σ2+2itmk02σ22](15)=[σ2π]1/41σ2+itmexp[(ix+σ2k0)22σ2+2itmk02σ22](16)=[σ2π]1/41σ2+itmexp[(xi[σ2+itmitm]k0)22σ2+2itmk02σ22](17)=[σ2π]1/41σ2+itmexp[([xk0mt]i[σ2+itm]k0)22σ2+2itmk02σ22](18)=[σ2π]1/41σ2+itmexp[(xk0mt)22σ2+2itm]exp[i(xk0mt)k02](19)[σ2π]1/41σ2+itm×exp[(σ2+itm)k022k02σ22](20)=[σ2π]1/41σ2+itmexp[(xk0mt)22σ2+2itm]eik0x

where from the second line to the third line we have used the Gaussian integral with

a=σ22+it2mb=ix+σ2k0

Average position of the wavepacket

With Eq.(20), one can obtain the average position of the wavepacket

(21)x=ψ(x,t)xψ(x,t)dx(22)=[σ2π]1/21σ4+2t2m2exp[(xk0mt)22σ22itm][x]exp[(xk0mt)22σ2+2itm]dx(23)=σ2π[σ4+2t2m2]exp[y22σ22itm][y+k0mt]exp[y22σ2+2itm]dy(24)=k0mtσ2π[σ4+2t2m2]exp[y22σ22itm]exp[y22σ2+2itm]dy(25)=k0mtσ2π[σ4+2t2m2]π[12σ22itm+12σ2+2itm]1/2(26)=k0mt

Therefore, the center of the wavepacket propagate with the group velocity

(27)vg=k0m
Figure 1. Snapshots of the time evolution of the Gaussian wavepacket with k0=5 a.u. Figure generated by this script.
Figure 2. Time evolution of the Gaussian wavepacket with k0=10 a.u. Figure generated by this script.

Appendix: Useful Gausian Integrals 1

(28)eax2+bxdx=πaeb2/4a

Reference

This post is licensed under CC BY 4.0 by the author.