Home |
Activities |
Publications |
Talks |
Teaching |
Research Seminars |
1. Final exam: 2019.06.25, 9:45-11:45 am, Room 5404 |
Lecture 1 Introduction; Riemannian metric Lecture 2 Existence of Riemannian metrics; Metric structure; Riemannian measure. Lecture 3 Divergence Theorem; Energy functional and geodesics Lecture 4 Geodesic equations; Exponetial map, normal coordinates, and polar coordinates Lecture 5 Local minimizing property of geodesics Lecture 6 Local isometry preserves geodesics; Hopf-Rinow Theorem; injectivity radius and cut locus Lecture 7 Existence of shortest geodesic in given homotopy classes Lecture note Lecture 8 Riemannian covering map; Affine connection and covariant derivatives of vector fields along a curve. Lecture 2019/05/07-09 Morse Index Theorem. Lecture 2019/06/06 Splitting Theorem. |
作业 1 3月14日(周四)交: 作业 2 3月28日(周四)交: 作业 3 4月11日(周四)交: |
助教: 严海涛 hawthorne_isis@163.com |