Introduction
In mathematics and physical science, spherical harmonics are special functions
defined on the surface of a sphere. The spherical harmonics form a complete set
of orthogonal functions and thus an orthonormal basis, each function defined on
the surface of a sphere can be written as a sum of these spherical harmonics.
Table of spherical harmonics
A more comploete list of spherical harmonics can be found
here.
Complex spherical harmonics $Y_l^m(\theta, \phi)$
\[Y_0^0(\theta, \phi) = {1\over2}\sqrt{1\over\pi}\]
\[\begin{alignat*}{2}
Y_1^{-1} &= {1\over2} \sqrt{3\over2\pi} \cdot e^{-i\phi} \cdot \sin{\theta} &
&= {1\over2} \sqrt{3\over2\pi} \cdot {(x-iy) \over r} \\[6pt]
Y_1^{0} &= {1\over2} \sqrt{3\over\pi} \cdot \cos{\theta} &
&= {1\over2} \sqrt{3\over\pi} \cdot {z \over r} \\[6pt]
Y_1^{1} &= -{1\over2} \sqrt{3\over2\pi} \cdot e^{i\phi} \cdot \sin{\theta} &
&= -{1\over2} \sqrt{3\over2\pi} \cdot {(x+iy) \over r} \\[6pt]
\end{alignat*}\]
\[\begin{alignat*}{2}
Y_2^{-2} &= {1\over4} \sqrt{15\over2\pi} \cdot e^{-i2\phi} \cdot \sin^2{\theta} &
&= {1\over4} \sqrt{15\over2\pi} \cdot {(x - iy)^2 \over r^2} \\[6pt]
Y_2^{-1} &= {1\over2} \sqrt{15\over2\pi} \cdot e^{-i\phi} \cdot \sin{\theta} \cos\theta &
&= {1\over2} \sqrt{15\over2\pi} \cdot {(x - iy) z \over r^2} \\[6pt]
Y_2^{0} &= {1\over4} \sqrt{5\over\pi} \cdot (3\cos^2\theta - 1) &
&= {1\over4} \sqrt{5\over\pi} \cdot {(3z^2 - r^2) \over r^2} \\[6pt]
Y_2^{1} &=-{1\over2} \sqrt{15\over2\pi} \cdot e^{i\phi} \cdot \sin{\theta} \cos\theta &
&=-{1\over2} \sqrt{15\over2\pi} \cdot {(x + iy) z \over r^2} \\[6pt]
Y_2^{2} &= {1\over4} \sqrt{15\over2\pi} \cdot e^{-i2\phi} \cdot \sin^2{\theta} &
&= {1\over4} \sqrt{15\over2\pi} \cdot {(x + iy)^2 \over r^2}
\end{alignat*}\]
\[\begin{alignat*}{2}
Y_3^{-3} &= {1\over8} \sqrt{35\over\pi} \cdot e^{-i3\phi} \cdot \sin^3{\theta} &
&= {1\over8} \sqrt{35\over\pi} \cdot {(x - iy)^3 \over r^3} \\[6pt]
Y_3^{-2} &= {1\over4} \sqrt{105\over2\pi} \cdot e^{-i2\phi} \cdot \sin^2{\theta} \cos\theta &
&= {1\over4} \sqrt{105\over2\pi} \cdot {(x - iy)^2z \over r^3} \\[6pt]
Y_3^{-1} &= {1\over8} \sqrt{21\over\pi} \cdot e^{-i\phi} \cdot \sin{\theta} (5\cos^2\theta - 1) &
&= {1\over8} \sqrt{21\over\pi} \cdot {(x - iy) (5z^2-r^2) \over r^3} \\[6pt]
Y_3^{0} &= {1\over4} \sqrt{7\over\pi} \cdot (5\cos^3\theta - 3\cos\theta) &
&= {1\over4} \sqrt{7\over\pi} \cdot {z(5z^2 - 3r^2) \over r^3} \\[6pt]
Y_3^{1} &=-{1\over8} \sqrt{21\over\pi} \cdot e^{i\phi} \cdot \sin{\theta} (5\cos^2\theta - 1) &
&=-{1\over8} \sqrt{21\over\pi} \cdot {(x + iy)(5z^2-r^2) \over r^3} \\[6pt]
Y_3^{2} &= {1\over4} \sqrt{105\over2\pi} \cdot e^{i2\phi} \cdot \sin^2{\theta} \cos\theta &
&= {1\over4} \sqrt{105\over2\pi} \cdot {(x + iy)^2z \over r^2} \\[6pt]
Y_3^{3} &=-{1\over8} \sqrt{35\over\pi} \cdot e^{i3\phi} \cdot \sin^3{\theta} &
&=-{1\over8} \sqrt{35\over\pi} \cdot {(x + iy)^3 \over r^2}
\end{alignat*}\]
Real spherical harmonics $Y_{lm}(\theta, \phi)$
\[Y_{00} = s = Y_0^0 = {1\over2}\sqrt{1\over\pi}\]
\[\begin{align*}
Y_{1,-1} &= p_y = i\sqrt{1\over2}(Y_1^{-1} + Y_1^{1}) = \sqrt{3\over4\pi}\cdot{y\over r} \\[6pt]
Y_{1,0} &= p_z = Y_1^0 = \sqrt{3\over4\pi}\cdot{z\over r} \\[6pt]
Y_{1,1} &= p_x = \sqrt{1\over2}(Y_1^{-1} + Y_1^{1}) = \sqrt{3\over4\pi}\cdot{x\over r}
\end{align*}\]
\[\begin{align*}
Y_{2,-2} &= d_{xy} = i\sqrt{1\over2}(Y_2^{-2} - Y_2^{2}) = {1\over2}\sqrt{15\over\pi}\cdot{xy\over r^2} \\[6pt]
Y_{2,-1} &= d_{yz} = i\sqrt{1\over2}(Y_2^{-1} + Y_2^{1}) = {1\over2}\sqrt{15\over\pi}\cdot{yz\over r^2} \\[6pt]
Y_{2,0} &= d_{z^2} = Y_2^0 = {1\over4}\sqrt{5\over\pi}\cdot {-x^2-y^2+2z^2\over r^2} \\[6pt]
Y_{2,1} &= d_{xz} = \sqrt{1\over2}(Y_2^{-1} - Y_2^{1}) = {1\over2}\sqrt{15\over\pi}\cdot{xz\over r^2} \\[6pt]
Y_{2,2} &= d_{x^2-y^2} = \sqrt{1\over2}(Y_2^{-2} + Y_2^{2}) = {1\over4}\sqrt{15\over\pi}\cdot{x^2 - y^2\over r^2}
\end{align*}\]
\[\begin{align*}
Y_{3,-3} &= f_{y(3x^2-y^2)} = i\sqrt{1\over2}(Y_3^{-3} + Y_3^{3}) = {1\over4}\sqrt{35\over2\pi}\cdot{(3x^2-y^2)y\over r^3} \\[6pt]
Y_{3,-2} &= f_{xyz} = i\sqrt{1\over2}(Y_3^{-2} - Y_3^{2}) = {1\over2}\sqrt{105\over\pi}\cdot{xyz\over r^3} \\[6pt]
Y_{3,-1} &= f_{yz^2} = i\sqrt{1\over2}(Y_3^{-1} + Y_3^{1}) = {1\over4}\sqrt{21\over2\pi}\cdot{y(4z^2-x^2-y^2)\over r^3} \\[6pt]
Y_{3,0} &= f_{z^3} = Y_3^0 = {1\over4}\sqrt{7\over\pi}\cdot{z(2z^2-3x^2-3y^2)\over r^3} \\[6pt]
Y_{3,1} &= f_{xz^2} = \sqrt{1\over2}(Y_3^{-1} - Y_3^{1}) = {1\over4}\sqrt{21\over2\pi}\cdot{x(4z^2-x^2-y^2)\over r^3} \\[6pt]
Y_{3,2} &= f_{z(x^2-y^2)} = \sqrt{1\over2}(Y_3^{-2} + Y_3^{2}) = {1\over2}\sqrt{105\over\pi}\cdot{(x^2-y^2)z\over r^3} \\[6pt]
Y_{3,3} &= f_{x(x^2-3y^2)} = \sqrt{1\over2}(Y_3^{-3} - Y_3^{3}) = {1\over4}\sqrt{35\over2\pi}\cdot{(x^2-3y^2)x\over r^3}
\end{align*}\]
Conversion matrix
\[\begin{align*}
Y_{lm} &=
\begin{cases}
{i\over\sqrt{2}} [Y_l^m - (-1)^mY_l^{-m}], & \quad\text{if } m < 0 \\[6pt]
Y_l^0, & \quad\text{if } m = 0 \\[6pt]
{1\over\sqrt{2}} [Y_l^{-m} + (-1)^mY_l^{m}], & \quad\text{if } m > 0
\end{cases} \\[12pt]
&=
\begin{cases}
{i\over\sqrt{2}} [Y_l^{-|m|} - (-1)^mY_l^{|m|}], & \quad\text{if } m < 0 \\[6pt]
Y_l^0, & \quad\text{if } m = 0 \\[6pt]
{1\over\sqrt{2}} [Y_l^{-|m|} + (-1)^mY_l^{|m|}], & \quad\text{if } m > 0
\end{cases} \\[12pt]
&=
\begin{cases}
\sqrt{2}(-1)^m \Im[Y_l^{|m|}], & \quad\text{if } m < 0 \\[6pt]
Y_l^0, & \quad\text{if } m = 0 \\[6pt]
\sqrt{2}(-1)^m \Re[Y_l^{m}], & \quad\text{if } m > 0 \\
\end{cases} \\
\end{align*}\]
\[\begin{equation*}
Y_l^m =
\begin{cases}
{1\over\sqrt{2}} (Y_{l|m|} - i Y_{l,-|m|}), & \quad\text{if } m < 0 \\[6pt]
Y_{l0}, & \quad\text{if } m = 0 \\[6pt]
{(-1)^m\over\sqrt{2}} (Y_{lm} + iY_{l,-m}), & \quad\text{if } m > 0
\end{cases}
\end{equation*}\]
Spherical harmonics visualization
The complex spherical harmonics can be computed by scipy.special.sph_harm
. I
also wrote a small helping
script
to convert from the complex spherical harmonics to real ones. For example, with
my little script
1
2
3
4
from sph_harm import show_sph_harm
# available plotting methods are 'mpl', 'mayavi' and 'plotly'
show_sph_harm ( l = 2 , m = 1 , real = True , plot = 'mpl' )
shows the real spherical harmonics $Y_{lm}(\theta, \phi)$ with $l=2, m=1$ on a
sphere, the resulting figure
Figure.
Visual representations of the real spherical harmonics on a sphere with
radius 1.0.
Or we can use another method to better visualize the nodes.
1
2
3
4
from sph_harm import show_sph_harm
# available plotting methods are 'mpl', 'mayavi' and 'plotly'
show_sph_harm ( l = 2 , m = 1 , real = True , use_sphere = False , plot = 'mpl' )
Figure.
Visual representations of the real spherical harmonics. The distance of
the surface from the origin indicate the absolute value of
$Y_{lm}(\theta, \phi)$ in angular direction $(\theta, \phi)$, i.e.
$|Y_{lm}(\theta, \phi)|$. The color represents the value of
$Y_{lm}(\theta, \phi)$.
Below, I used Plotly
to list the real spherical harmonics up to $l = 3$