Publications

[overall citation > 2800. H-index = 27] 

  1. Unified approach to electrical and thermal transport in high-Tc superconductors,
    Rufus Boyack, Z.Q. Wang, Q.J. Chen, and K. Levin, Phys. Rev. B 102, 064508 (2021); arXiv:2104.04879.
  2. Quantum geometric contributions to the BKT transition: Beyond mean field theory,
    Z.Q. Wang, G. Chaudhary, Q.J. Chen, and K. Levin, Phys. Rev. B 102, 184504 (2020); arXiv:2007.15028.
  3. Superfluidity and pairing phenomena in ultracold atomic Fermi gases in one-dimensional optical lattices. II. Effect of population imbalance,
    J.B. Wang, L. Sun, Q. Zhang, L.F. Zhang, Y. Yu, C.H. Lee, and Q.J. Chen, Phys. Rev. A 101, 053618 (2020); arXiv:2001.04922.
  4. Superfluidity and pairing phenomena in ultracold atomic Fermi gases in one-dimensional optical lattices. I. Balanced case,
    J.B. Wang, L.F. Zhang, Y. Yu, C.H. Lee, and Q.J. Chen, Phys. Rev. A 101, 053617 (2020); arXiv:2001.00545.
  5. The Gor'kov and Melik-Barkhudarov correction to the mean-field critical field transition to Fulde-Ferrell-Larkin-Ovchinnikov states,
  6. Coexistence of nontrivial topological properties and strong ferromagnetic fluctuations in A2Cr3As3,
    C.C. Xu, N.H. Wu, G.-X. Zhi, B.-H. Lei, X. Duan, F.L. Ning, C. Cao, Q.J. Chen, npj Computational Materials 6, 30 (2020); arXiv:1909.04346.
  7. Strong Pairing in two dimensions: Pseudogap and other phenomena,
    Xiaoyu Wang, Q.J. Chen, and K. Levin, New J. Phys. 22, 063050 (2020); arXiv:1907.06121.
  8. Unusual destruction and enhancement of superfluidity of atomic Fermi gases by population imbalance in a one-dimensional optical lattice,
  9. Combined effects of pairing fluctuations and a pseudogap in the Cuprate Hall effect,
    Xiaoyu Wang, Rufus Boyack, Q.J. Chen, and K. Levin, Phys. Rev. B 99, 134504 (2019); arXiv:1812.05140.
  10. Probing the many-body physics via measurement of the closed-channel fraction in a 6Li superfluid,
    X.-P. Liu, X.-C. Yao, H.-Z. Chen, X.-Q. Wang, Y.-X. Wang, Y.A. Chen, Q.J. Chen, K. Levin, and J.-W. Pan, arXiv:1903.12321; submitted to PRL.
  11. Ultra high temperature superfluidity in ultracold atomic Fermi gases with mixed dimensionality,
    L.F. Zhang, J.B. Wang, Y. Yu, and Q.J. Chen, Sci. China: Phys. Mech. Astro. 63, 227421 (2020); arXiv:1807.05049. (Altmetric = 23)
  12. Unique crystal field splitting and multiband RKKY interactions in Ni-doped EuRbFe4As4,
    C.C. Xu, Q.J. Chen, and C. Cao, Commun. Phys. 2, 16 (2019); arXiv:1902.06867
  13. Generalization of BCS theory to short coherence length superconductors: A BCS--Bose- Einstein crossover scenario,
    Q.J. Chen, arXiv:1801.06266 (PhD dissertation, Univ Chicago, 2000).
  14. Cuprate diamagnetism in the presence of a pseudogap: Beyond the standard fluctuation formalism,
    Rufus Boyack, Q.J. Chen, A. A. Varlamov, and K. Levin, Phys. Rev. B 97, 064503 (2018); arXiv:1710.03246.
  15. Instability of Fulde-Ferrell-Larkin-Ovchinnikov states in three and two dimensions,
    Jibiao Wang, Yanming Che, Leifeng Zhang, and Q.J. Chen, Phys. Rev. B 97, 134513 (2018); arXiv:1703.00161.
  16. Exotic superfluidity and pairing phenomena in atomic Fermi gases in mixed dimensions,
    Leifeng Zhang, Yanming Che, Jibiao Wang and Q.J. Chen, Sci. Rep. 7, 12948 (2017) ; arXiv:1710.00200.
  17. Impurity effects on BCS-BEC crossover in ultracold atomic Fermi gases,
    Yanming Che, Leifeng Zhang, Jibiao Wang and Q.J. Chen, Phys. Rev. B 95, 014504 (2017); arXiv:1608.02110.
  18. Reentrant superfluidity and pair density wave in single component dipolar Fermi gases,
    Yanming Che, Jibiao Wang, and Q.J. Chen, Phys. Rev. A 93, 063611 (2016); arXiv:1503.04453.
  19. Effect of the particle-hole channel on BCS--Bose-Einstein condensation crossover in atomic Fermi gases,
  20. Pseudogap phenomena in ultracold atomic Fermi gases,
    Q.J. Chen, and Jibiao Wang Front. Phys. 9(5), 539-570 (2014); arXiv:1409.7881. (Invited review article) (Times cited > 26
  21. Enhancement effect of mass imbalance on Fulde-Ferrell-Larkin-Ovchinnikov type of pairing in Fermi-Fermi mixtures of ultracold quantum gases,
    Jibiao Wang, Yanming Che, Leifeng Zhang, and Q.J. Chen, Sci. Rep. 7, 39783 (2017); arXiv:1404.5696. (Times cited > 20
  22. Exotic phase separation and phase diagrams of a Fermi-Fermi mixture in a trap at finite temperature,
    J.B. Wang, H. Guo, and Q.J. Chen, Phys. Rev. A 87, 041601(R) (2013); arXiv:1208.1455.
  23. Zero density limit extrapolation of the superfluid transition temperature in a unitary atomic Fermi gas on a lattice,
  24. Probing the homogeneous spectral function of a strongly interacting superfluid atomic Fermi gas in a trap using phase separation and momentum resolved rf spectroscopy,
    Q.J. Chen, Phys. Rev. A 84, 013624 (2011). (Selected for Virtual Journal of Atomic Quantum Fluids Vol. 8, issue 3, 2011); arXiv:1101.2836.
  25. Superfluidity in atomic Fermi gases,
    Y. Yu and Q.J. Chen, Physica C 470, S900 (2010); doi:10.1016/j.physc.2009.11.012.; arXiv:1101.2846 (M2S-IX Tokyo, September 2009, invited talk).
  26. Two-energy-gap preformed-pair scenario for the cuprates: Implications for angle-resolved photoemission spectroscopy,
    C.-C. Chien, Y. He, Q.J. Chen, and K. Levin, Phys. Rev. B 79, 214527 (2009). (Selected for Virtual Journal of Applications of Superconductivity Vol. 17, issue 1, 2009.); arXiv:0901.3151 (Times cited > 31
  27. Finite-temperature behavior of an inter-species fermionic superfluid with population imbalance,
    H. Guo, C.-C. Chien, Q.J. Chen, Y. He, and K. Levin, Phys. Rev. A 80, 011601(R) (2009). (Selected for Virtual Journal of Atomic Quantum Fluids Vol. 1, issue 2, 2009); arXiv:0812.3121
  28. Theory of radio frequency spectroscopy in ultracold Fermi gases and their relation to photoemission in the cuprates,
    Q.J. Chen, Y. He, C.-C. Chien, and K. Levin, Rep. Prog. Phys. 72, 122501 (2009); arXiv:0810.1940. (Times cited > 37)
  29. Comparison of different pairing fluctuation approaches to BCS-BEC Crossover,
    K. Levin, Q.J. Chen, C.-C. Chien, and Y. He, Ann. Phys. 325, 233 (2010), doi:10.1016/j.aop.2009.09.011 (online 22 Sep 2009); arXiv:0810.1938 (Times cited > 36)
  30. Fermions with attractive interactions on optical lattices and implications for correlated systems,
    C.-C. Chien, Q.J. Chen, and K. Levin, Phys. Rev. A 78, 043612 (2008); arXiv:0808.1900.
  31. Momentum resolved radio frequency spectroscopy in trapped Fermi gases,
    Q.J. Chen and K. Levin, Phys. Rev. Lett. 102, 190402 (2009); arXiv:0807.0830. (Times cited > 67)
  32. Temperature and final state effects in radio frequency spectroscopy experiments on atomic Fermi gases,
    Y. He, C.-C. Chien, Q.J. Chen, and K. Levin, Phys. Rev. Lett.102, 020402 (2009); arXiv:0804.1429. (Times cited > 59)
  33. Understanding the protected nodes and collapse of the Fermi arcs in underdoped cuprate superconductors,
  34. Radio frequency spectroscopy of trapped Fermi gases with population imbalance,
    Y. He, C.-C. Chien, Q.J. Chen, and K. Levin, Phys. Rev. A 77, 011602(R) (2008); arXiv:0707.2625.
  35. Thermodynamics and superfluid density in BCS-BEC crossover with and without population imbalance,
    Y. He, C.-C. Chien, Q.J. Chen, and K. Levin, Phys. Rev. B. 76, 224516 (2007); arXiv:0707.1751. (Times cited > 40)
  36. Superfuid-insulator transitions at non-integer filling in optical lattices of fermionic atoms,
    C.-C. Chien, Y. He, Q.J. Chen, and K. Levin, Phys. Rev. A 77, 011601(R) (2008); arXiv:0706.3417.
  37. First and second sound modes at finite temperature in trapped Fermi gases from BCS to BEC,
    Y. He, Q.J. Chen, C.-C. Chien, and K. Levin, Phys. Rev. A 76, 051602(R) (2007); arXiv:0704.1889.
  38. Fermionic superfluidity: From high Tc superconductors to ultracold Fermi gases
    Q.J. Chen, C.-C. Chien, Y. He, and K. Levin, J. supercond. Nov. Magn. 20, 515 (2007); arXiv:cond-mat/0612268; proceedings of the 5th Int'l Conf. of the Stripes, (Rome, Italy, Dec 17-22, 2006).
  39. Superfluid phase diagrams of trapped Fermi gases with population imbalance
    C.-C. Chien, Q.J. Chen, Y. He, and K. Levin, Phys. Rev. Lett. 98, 110404 (2007); arXiv:cond-mat/0612103. (Times cited > 50)
  40. What can ultracold Fermi gases teach us about high Tc superconductors and vice versa?
    K. Levin and Q.J. Chen, Physica C 460-462, 347 (2007); arXiv:cond-mat/0611104; proceedings of the M2S-HTSC-VIII conference, (Dresden, Germany, July 9-14, 2006).
  41. Single-plane-wave Larkin-Ovchinnikov-Fulde-Ferrell state in BCS--Bose-Einstein condensation crossover
    Y. He, C.-C. Chien, Q.J. Chen, and K. Levin, Phys. Rev. A 75, 021602(R) (2007); arXiv:cond-mat/0610274. (Times cited > 31)
  42. Finite temperature effects in ultracold Fermi gases.
    K. Levin and Q.J. Chen, in Ultracold Fermi Gases, Proc. Int'l School of Physics "Enrico Fermi", Course CLXIV, Varenna, Italy, June 20-30, 2006, ed. by M. Inguscio, W. Ketterle, and C. Salomon (IOS Press, Amsterdam), pp. 751-778, 2008; arXiv:cond-mat/0610006 (Lecture given at the International School of Physics "Enrico Fermi" -- the 2006 Varenna Summer School on "Ultracold Fermi Gases", June 20-30, 2006).
  43. Theory of superfluids with population imbalance: Finite temperature and BCS-BEC crossover effects.
    Q.J. Chen, Y. He, C.-C. Chien, and K. Levin, Phys. Rev. B 75, 014521 (2007); arXiv:cond-mat/0608662. (Times cited > 28)
  44. Stability conditions and phase diagrams for two component Fermi gases with population imbalance.
    Q.J. Chen, Y. He, C.-C. Chien, and K. Levin, Phys. Rev. A 74, 063603 (2006); arXiv:cond-mat/0608454. (Times cited > 32)
  45. Finite temperature effects in trapped Fermi gases with population imbalance.
    C.-C. Chien, Q.J. Chen, Y. He, and K. Levin, Phys. Rev. A 74, 021602(R) 2006; arXiv:cond-mat/0605684. (Times cited > 20)
  46. Intermediate temperature superfluidity in an atomic Fermi gas with population imbalance.
    C.-C. Chien, Q.J. Chen, Y. He, and K. Levin, Phys. Rev. Lett. 97, 090402 (2006); arXiv:cond-mat/0605039. (Times cited > 73)
  47. Finite temperature momentum distribution of a trapped Fermi gas.
    Q.J. Chen, C.A. Regal, D.S. Jin, and K. Levin, Phys. Rev. A 74, 011601(R) (2006); arXiv:cond-mat/0604469.
  48. Understanding the superfluid phase diagram in trapped Fermi gases.
    Q.J. Chen, C.A. Regal, M. Greiner, D.S. Jin, and K. Levin, Phys. Rev. A 73, 041601(R) (2006); arXiv:cond-mat/0512596. (Times cited > 20)
  49. Ground state description of a single vortex in an atomic Fermi gas: From BCS to Bose-Einstein condensation.
    C.-C. Chien, Y. He, Q.J. Chen, and K. Levin, Phys. Rev. A 73, 041603(R) (2006); arXiv:cond-mat/0510647. (Times cited > 25)
  50. Applying BCS-BEC crossover theory to high temperature superconductors and ultracold atomic Fermi gases.
    Q.J. Chen, J. Stajic, and K. Levin, Low Temp. Phys. 32, 406 (2006) [Fiz. Nizk. Temp. 32, 538-560 (2006)]; arXiv:cond-mat/0508603 (Invited review article for the 20th anniversary of high Tc superconductivity). (Times cited > 33)
  51. Population of closed-channel molecules in trapped Fermi gases with broad Feshbach resonances
  52. Radio frequency spectroscopy and the pairing gap in trapped Fermi gases
    Y. He, Q.J. Chen, and K. Levin, Phys. Rev. A 72, 011602(R) (2005); arXiv:cond-mat/0504394. (Times cited > 50)
  53. Thermodynamics of interacting fermions in atomic traps
    Q.J. Chen, J. Stajic, and K. Levin, Phys. Rev. Lett. 95, 260405 (2005); arXiv:cond-mat/0411090. (Times cited > 42)
  54. Heat capacity of a strongly interacting Fermi gas
    J. Kinast, A. Turlapov, J.E. Thomas, Q.J. Chen, J. Stajic, and K. Levin, Science 307, 1296 (2005); published online 27 January 2005 [Science Express, doi:10.1126/science.1109220] (Online supplementary materials); arXiv:cond-mat/0502087. (Times cited > 328)
  55. Density profiles of strongly interacting trapped Fermi gases.
    J. Stajic, Q.J. Chen, and K. Levin, Phys. Rev. Lett. 94, 060401 (2005); arXiv:cond-mat/0408104. (Times cited > 39)
  56. BCS-BEC crossover: From high temperature superconductors to ultracold superfluids.
    Q.J. Chen, J. Stajic, S.N. Tan, and K. Levin, Physics Reports 412, 1-88 (2005); arXiv:cond-mat/0404274. (Times cited > 590)
  57. Particle density distributions in Fermi gas superfluids: Differences between one- and two-channel models in the Bose-Einstein condensation limit.
    J. Stajic, Q.J. Chen, and K. Levin, Phys. Rev. A 71, 033601 (2005); arXiv:cond-mat/0402383.
  58. Nature of superfluidity in ultracold Fermi gases near Feshbach resonances.
    J. Stajic, J.N. Milstein, Q.J. Chen, M.L. Chiofalo, M.J. Holland, and K. Levin, Phys. Rev. A 69, 63610 (2004); arXiv:cond-mat/0309329. (Times cited > 86)
  59. The pseudogap state in superconductors: Extended Hartree approach to time-dependent Ginzburg-Landau theory.
    J. Stajic, A. Iyengar, Q.J. Chen, and K. Levin, Phys. Rev. B 68, 174517 (2003); arXiv:cond-mat/0306151.
  60. Pairing fluctuation theory of high Tc superconductivity in the presence of nonmagnetic impurities.
    Q.J. Chen and J.R. Schrieffer, Phys. Rev. B 66, 014512 (2002); arXiv:cond-mat/0202541.
  61. Magnetic field effects on Tc and the pseudogap onset temperature in cuprate superconductors.
    Q.J. Chen, A.P. Iyengar, Y.-J. Kao, K.Levin, Int. J. Mod. Phys. B 16, 3176 (2002); arXiv:cond-mat/0203007; Proceedings of the Conference on Physical Phenomena at High Magnetic Fields (PPHMF-IV), Santa Fe, NM, October 19-25, 2001 (eds. G. Boebinger, Z. Fisk, L.P. Gor'kov, A. Lacerda, and J.R. Schrieffer, World Scientific, Singapore, 2002), pp. 280-283.
  62. Magnetic field effects in the pseudogap phase: A precursor superconductivity scenario.
    A.P. Iyengar, Y.-J. Kao, Q.J. Chen K. Levin, J. Phys. Chem. Solids 63, 2349 (2002); arXiv:cond-mat/0107614.
  63. A precursor superconductivity approach to magnetic field effects in the pseudogap phase.
    Y.-J. Kao, A.P. Iyengar, Q.J. Chen K.Levin, Physica B, 312-313, 42 (2002).
  64. The origin of the pseudogap phase: Precursor superconductivity versus a competing energy gap scenario.
    K. Levin, Q.J. Chen, I. Kosztin, B. Janko, Y.-J. Kao, and A.P. Iyengar, J. Phys. Chem. Solids 63, 2233 (2002); arXiv:cond-mat/0107275.
  65. Magnetic field effects in the pseudogap phase: A competing energy gap scenario for precursor superconductivity.
    Y.-J. Kao, A.P. Iyengar, Q.J. Chen, and K. Levin, Phys. Rev. B 64, R140505 (2001); arXiv:cond-mat/0103614. (Times cited > 22)
  66. Superconducting phase coherence in the presence of a pseudogap: Relation to specific heat, tunneling and vortex core spectroscopies.
    Q.J. Chen, K. Levin, and I. Kosztin, Phys. Rev. B 63, 184519 (2001); arXiv:cond-mat/0009450. (Times cited > 54)
  67. Short coherence length superconductivity: A generalization of BCS theory for the underdoped cuprates.
    K. Levin, Q.J. Chen, and I. Kosztin, Physica C 341, Pt.2, 851 (2000); arXiv:cond-mat/0003133
  68. Nodal quasiparticles versus phase fluctuations in high Tc superconductors: An intermediate scenario.
    Q.J. Chen, I. Kosztin, and K. Levin, Physica C 341, Pt.1, 149 (2000); arXiv:cond-mat/9912314.
  69. Unusual thermodynamical and transport signatures of the BCS Bose-Einstein crossover scenario below Tc.
    Q.J. Chen, I. Kosztin, and K. Levin, Phys. Rev. Lett. 85, 2801 (2000); arXiv:cond-mat/9908362. (Times cited > 44)
    arXiv:cond-mat/9908362
  70. Pair excitations, collective modes and gauge invariance in the BCS - Bose-Einstein crossover scenario.
    I. Kosztin, Q.J. Chen, Y.-J. Kao, and K. Levin, Phys. Rev. B 61, 11662 (2000); arXiv:cond-mat/9906180. (Times cited > 70)
  71. A BCS - Bose-Einstein crossover theory and its application to the cuprates.
    Q.J. Chen, I. Kosztin, B. Jankó, and K. Levin, in High Temperature Superconductivity, AIP conference proceedings 483, (ed. S.E. Barnes, J. Ashkenazi, J.L. Cohn, and F.L. Zuo, American Institute of Physics, Woodbury, New York, 1999), pp. 22-25.
  72. Pseudogap phenomena in the superconducting phase of the cuprates.
    I. Kosztin, Q.J. Chen, B. Jankó, and K. Levin, in High Temperature Superconductivity, AIP conference proceedings 483, (ed. S.E. Barnes, J. Ashkenazi, J.L. Cohn, and F.L. Zuo, American Institute of Physics, Woodbury, New York, 1999), pp. 57-62.
  73. Superconducting transitions from the pseudogap state: d-wave symmetry, lattice, and low-dimensional effects.
    Q.J. Chen, Ioan Kosztin, B. Jankó, and K. Levin, Phys. Rev. B 59, 7083 (1999); arXiv:cond-mat/9805032. (Times cited > 84)
  74. Pairing fluctuation theory of superconducting properties in underdoped to overdoped cuprates.
    Q.J. Chen, I. Kosztin, B. Jankó, and K. Levin, Phys. Rev. Lett. 81, 4708 (1998); arXiv:cond-mat/9807414. (Times cited > 184)
  75. Relationship between the pseudo- and superconducting gaps: effects of residual pairing correlations below Tc.
    I. Kosztin, Q.J. Chen, B. Jankó, and K. Levin, Phys. Rev. B 58, R5936 (1998); arXiv:cond-mat/9805065. (Times cited > 62)

  76. Pressure effect on diamond nucleation in a hot-filament CVD system.
    S.T. Lee, Y.W. Lam, Z.D. Lin, Y. Chen and Q.J. Chen, Phys. Rev. B 55, 15937 (1997). (Times cited > 50)
  77. Very low pressure nucleation of diamond on mirror-smooth silicon in hot filament chemical vapor deposition system.
    Z.-D. Lin, Y. Chen, Q.-J. Chen, S.T. Lee, and Y. W. Lam, Chinese Phys. Lett. 13, 753 (1996).
  78. Experimental approach to the mechanism of the negative bias enhanced nucleation of diamond on Si via hot filament chemical vapor deposition.
    Q.J. Chen, and Z.D. Lin, J. Appl. Phys. 80, 797 (1996).
  79. Electron-emission-enhanced diamond nucleation on Si by chemical vapor deposition.
    Q.J. Chen, and Z.D. Lin, Appl. Phys. Lett. 68, 2450 (1996). (Times cited > 40)
  80. Epitaxially oriented growth of diamond on silicon by chemical vapor deposition.
    Q.J. Chen, L.-X. Wang, Z. Zhang, J. Yang, and Z.D. Lin, Appl. Phys. Lett. 68, 176 (1996). (Times cited > 26)
  81. Oriented and textured growth of (111) diamond on silicon using hot filament chemical vapor deposition.
    Q.J. Chen, Y. Chen, J. Yang, and Z.D. Lin, Thin Solid Films 274, 160 (1996). (Altmetric = 6)
  82. High efficiency deposition of diamond film by hot filament chemical vapor deposition,
    Y. Chen, Q.J. Chen, and Z.D. Lin, J. Mater. Res. 11, 2957 (1996).
  83. Diamond growth on thin Ti wafer via chemical vapor deposition.
    Q.J. Chen, and Z.D. Lin, J. Mater. Res. 10(RC), 2685 (1995).
  84. Synthesis of oriented textured diamond films on silicon via hot filament chemical vapor deposition.
    Q.J. Chen, J. Yang, and Z.D. Lin, Appl. Phys. Lett. 67, 1853 (1995). (Times cited > 86)
  85. Diamond nucleation and growth on mirror-polished Si wafer pretreated by Si+ implantation.
    J. Yang, Xiaowei Su, Q.J. Chen, and Z.D. Lin, in Proc. Applied Diamond Conf. 1995, 3rd Int'l Conf. on Appl. of Diamond Films and Relat. Mater., ed. A. Feldman, Y. Tzeng, W. A. Yarbrough, M. Yoshikawa and M. Murakawa, (NIST Special Publication Vol. 885, Gaithersburg, Maryland, 21-24 August 1995), pp. 343-346.
  86. Si+ implantation: A pretreatment method for diamond nucleation on a Si wafer.
    J. Yang, X.W. Su, Q.J. Chen, and Z.D. Lin, Appl. Phys. Lett. 66, 3284 (1995). (Times cited > 20)
  87. Heteroepitaxial diamond film formed on Si(001) wafer.
    J. Yang, Q.J. Chen, Z.D. Lin, L.X. Wang, X. Jin, and Z. Zhang, Progress in Natural Science, Vol. 5, 246 (1995).
  88. Achieving high nucleation density of diamond film under low pressures in hot-filament chemical vapor deposition.
    Y. Chen, J. Mei, Q.J. Chen, and Z.D. Lin, Materials Research Society symposium proceedings, Vol. 363, pp. 175-182, (1995), (Chemical Vapor Deposition of Refractory Metals and Ceramics III, MRS, Boston, MA, Nov., 1994).

Go back Home        Last Modified: 05/23/2018        Webcounter: countless since 11/23/99.